Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 航運管理學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25809
DC FieldValueLanguage
dc.contributor.authorKurrahman, Taufiken_US
dc.contributor.authorTsai, Feng Mingen_US
dc.contributor.authorLim, Ming K.en_US
dc.contributor.authorSethanan, Kanchanaen_US
dc.contributor.authorTseng, Ming-Langen_US
dc.date.accessioned2025-06-07T06:14:09Z-
dc.date.available2025-06-07T06:14:09Z-
dc.date.issued2025/3/19-
dc.identifier.issn1367-5567-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25809-
dc.description.abstractThis study aims to develop and evaluate generative artificial intelligence (AI) capabilities to enhance green supply chain management (GSCM) in the automotive industry, Indonesia. Prior studies have concentrated on constructing generative AI metrics; however, there is a lack of emphasis on developing the capabilities to address dynamic environmental challenges in GSCM. This study integrates dynamic capabilities view with organisational learning theory and employs the integrated fuzzy Delphi method and fuzzy synthetic evaluation-decision-making trial and evaluation laboratory approach to ascertain the valid attributes to facilitate GSCM improvement. The findings indicate that dynamic knowledge and innovative learning capabilities and reflexive control and measurement capabilities from the perspective of sensing capabilities, as well as co-evolution capabilities from the perspective of seising capabilities, are key capabilities that need to be prioritised to enhance GSCM. In practices, data gathering and analysis for predictive maintenance, and sales and operations strategy identification must be prioritised.en_US
dc.language.isoEnglishen_US
dc.publisherTAYLOR & FRANCIS LTDen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF LOGISTICS-RESEARCH AND APPLICATIONSen_US
dc.subjectGenerative artificial intelligenceen_US
dc.subjectgreen supply chain managementen_US
dc.subjectsupply chain managementen_US
dc.subjectdynamic capabilities viewen_US
dc.subjectfuzzy Delphi methoden_US
dc.subjectfuzzy synthetic evaluation-DEMATELen_US
dc.titleGenerative AI capabilities for green supply chain management improvement: extended dynamic capabilities viewen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/13675567.2025.2479006-
dc.identifier.isiWOS:001449130300001-
dc.identifier.eissn1469-848X-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Shipping and Transportation Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptBachelor Degree Program in Ocean Tourism Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:航運管理學系
Show simple item record

Page view(s)

38
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback