Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25825
DC FieldValueLanguage
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorLai, Chia-Chingen_US
dc.date.accessioned2025-06-07T06:16:30Z-
dc.date.available2025-06-07T06:16:30Z-
dc.date.issued2024/11/1-
dc.identifier.issn0885-8950-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25825-
dc.description.abstractThis paper addresses a novel deep learning (DL) approach for online estimating the transient stability margin (TSM) in power grids. The TSM is characterized by a functional relationship between power system variables and the critical clearing time (CCT). To enhance the accuracy of TSM estimation, an improved DL ensemble (iDLE) model, which incorporates the dynamic error correction (DEC) and the multi-objective ensemble learning (MOEL), is proposed. The iDLE model is formulated as an evolutionary multi-objective framework and optimized using the non-dominated sorting genetic algorithm (NSGA-II) along with fuzzy decision analysis to derive the optimal solution. The proposed model is applied to a classical test system and a practical power system, followed by a discussion of the results.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON POWER SYSTEMSen_US
dc.subjectdeep learningen_US
dc.subjectensemble learningen_US
dc.subjectCritical clearing timeen_US
dc.subjectfuzzy set theoryen_US
dc.subjectfuzzy set theoryen_US
dc.subjectmulti-objective optimizationen_US
dc.subjectmulti-objective optimizationen_US
dc.subjectNSGA-IIen_US
dc.subjectNSGA-IIen_US
dc.subjecttransient stabilityen_US
dc.subjecttransient stabilityen_US
dc.subjecttransient stability maen_US
dc.titleOnline Transient Stability Margin Estimation Using Improved Deep Learning Ensemble Modelen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TPWRS.2023.3328154-
dc.identifier.isiWOS:001342803800035-
dc.relation.journalvolume39en_US
dc.relation.journalissue6en_US
dc.relation.pages7421-7424en_US
dc.identifier.eissn1558-0679-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:機械與機電工程學系
Show simple item record

Page view(s)

31
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback