Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25825
DC 欄位值語言
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorLai, Chia-Chingen_US
dc.date.accessioned2025-06-07T06:16:30Z-
dc.date.available2025-06-07T06:16:30Z-
dc.date.issued2024/11/1-
dc.identifier.issn0885-8950-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25825-
dc.description.abstractThis paper addresses a novel deep learning (DL) approach for online estimating the transient stability margin (TSM) in power grids. The TSM is characterized by a functional relationship between power system variables and the critical clearing time (CCT). To enhance the accuracy of TSM estimation, an improved DL ensemble (iDLE) model, which incorporates the dynamic error correction (DEC) and the multi-objective ensemble learning (MOEL), is proposed. The iDLE model is formulated as an evolutionary multi-objective framework and optimized using the non-dominated sorting genetic algorithm (NSGA-II) along with fuzzy decision analysis to derive the optimal solution. The proposed model is applied to a classical test system and a practical power system, followed by a discussion of the results.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON POWER SYSTEMSen_US
dc.subjectdeep learningen_US
dc.subjectensemble learningen_US
dc.subjectCritical clearing timeen_US
dc.subjectfuzzy set theoryen_US
dc.subjectfuzzy set theoryen_US
dc.subjectmulti-objective optimizationen_US
dc.subjectmulti-objective optimizationen_US
dc.subjectNSGA-IIen_US
dc.subjectNSGA-IIen_US
dc.subjecttransient stabilityen_US
dc.subjecttransient stabilityen_US
dc.subjecttransient stability maen_US
dc.titleOnline Transient Stability Margin Estimation Using Improved Deep Learning Ensemble Modelen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TPWRS.2023.3328154-
dc.identifier.isiWOS:001342803800035-
dc.relation.journalvolume39en_US
dc.relation.journalissue6en_US
dc.relation.pages7421-7424en_US
dc.identifier.eissn1558-0679-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.fulltextno fulltext-
item.languageiso639-1English-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
顯示於:機械與機電工程學系
顯示文件簡單紀錄

Page view(s)

31
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋