Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25862
DC 欄位值語言
dc.contributor.authorTsai, Yu-Shiuanen_US
dc.contributor.authorTsai, Chia-Tungen_US
dc.contributor.authorHuang, Jian-Hongen_US
dc.date.accessioned2025-06-07T06:59:14Z-
dc.date.available2025-06-07T06:59:14Z-
dc.date.issued2025-04-27-
dc.identifier.issn0920-8542-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25862-
dc.description.abstractUnderwater imaging faces challenges such as light attenuation, scattering, and water turbidity, which degrade image quality and hinder accurate organism recognition. The detecting underwater objects dataset, with resolutions from 586 x 482 to 3840 x 2160 pixels, highlights significant object scale variation, including a high proportion of small objects (27.38%). This study introduces the underwater attention-parallel residual bi-fusion feature pyramid network model, which improves detection accuracy for small- and medium-sized objects in complex underwater environments. The proposed model incorporates a spatial pyramid pooling module with attention mechanisms to enhance multi-scale feature representation and integrates the normalized Wasserstein distance into the loss function for better detection flexibility. Experimental results demonstrate that the model outperforms state-of-the-art methods, achieving a mean average precision at intersection over union threshold of 0.5 of 88.8% and a mean average precision at intersection over union threshold range of 0.5-0.95 of 68.3%, representing a 2.5-9% improvement over baseline models. Furthermore, the model achieved a precision of 85.5%, recall of 82.9%, and an F1-score of 0.8417. These results highlight the model's robustness and effectiveness, offering significant contributions to underwater biodiversity studies, environmental assessments, and marine ecosystem management. By addressing scale variability and achieving high accuracy even for rare species such as scallops, the proposed model supports practical applications in underwater monitoring and conservation.en_US
dc.language.isoEnglishen_US
dc.publisherSPRINGERen_US
dc.relation.ispartofJOURNAL OF SUPERCOMPUTINGen_US
dc.subjectMulti-scale underwater object detectionen_US
dc.subjectAttention mechanismen_US
dc.subjectNormalized Wasserstein distance lossen_US
dc.subjectUnderwater attention-PRB modelen_US
dc.subjectMarine biodiversity detectionen_US
dc.subjectFeature representationen_US
dc.titleMulti-scale detection of underwater objects using attention mechanisms and normalized Wasserstein distance lossen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s11227-025-07251-5-
dc.identifier.isiWOS:001478110200001-
dc.relation.journalvolume81en_US
dc.relation.journalissue6en_US
dc.identifier.eissn1573-0484-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Electrical Engineering and Computer Science-
crisitem.author.deptDepartment of Computer Science and Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0001-8264-9601-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
顯示於:資訊工程學系
顯示文件簡單紀錄

Page view(s)

18
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋