Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25862
標題: Multi-scale detection of underwater objects using attention mechanisms and normalized Wasserstein distance loss
作者: Tsai, Yu-Shiuan 
Tsai, Chia-Tung
Huang, Jian-Hong
關鍵字: Multi-scale underwater object detection;Attention mechanism;Normalized Wasserstein distance loss;Underwater attention-PRB model;Marine biodiversity detection;Feature representation
公開日期: 27-四月-2025
出版社: SPRINGER
卷: 81
期: 6
來源出版物: JOURNAL OF SUPERCOMPUTING
摘要: 
Underwater imaging faces challenges such as light attenuation, scattering, and water turbidity, which degrade image quality and hinder accurate organism recognition. The detecting underwater objects dataset, with resolutions from 586 x 482 to 3840 x 2160 pixels, highlights significant object scale variation, including a high proportion of small objects (27.38%). This study introduces the underwater attention-parallel residual bi-fusion feature pyramid network model, which improves detection accuracy for small- and medium-sized objects in complex underwater environments. The proposed model incorporates a spatial pyramid pooling module with attention mechanisms to enhance multi-scale feature representation and integrates the normalized Wasserstein distance into the loss function for better detection flexibility. Experimental results demonstrate that the model outperforms state-of-the-art methods, achieving a mean average precision at intersection over union threshold of 0.5 of 88.8% and a mean average precision at intersection over union threshold range of 0.5-0.95 of 68.3%, representing a 2.5-9% improvement over baseline models. Furthermore, the model achieved a precision of 85.5%, recall of 82.9%, and an F1-score of 0.8417. These results highlight the model's robustness and effectiveness, offering significant contributions to underwater biodiversity studies, environmental assessments, and marine ecosystem management. By addressing scale variability and achieving high accuracy even for rare species such as scallops, the proposed model supports practical applications in underwater monitoring and conservation.
URI: http://scholars.ntou.edu.tw/handle/123456789/25862
ISSN: 0920-8542
DOI: 10.1007/s11227-025-07251-5
顯示於:資訊工程學系

顯示文件完整紀錄

Page view(s)

18
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋