Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25881
DC 欄位值語言
dc.contributor.authorLi, Shao-Yingen_US
dc.contributor.authorLiu, Yi-Huaen_US
dc.contributor.authorLiu, Chun-Liangen_US
dc.contributor.authorChen, Guan-Jhuen_US
dc.contributor.authorWang, Shun-Chungen_US
dc.date.accessioned2025-06-07T06:59:20Z-
dc.date.available2025-06-07T06:59:20Z-
dc.date.issued2025-06-01-
dc.identifier.issn1452-3981-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25881-
dc.description.abstractState of health (SOH) estimation remains a critical research focus in battery management systems, where feature extraction and selection play crucial roles in improving estimation accuracy. This study examines the effectiveness of statistical feature extraction from constant current-constant voltage (CC-CV) charging curves, focusing on voltage and current characteristics. A total of 50 health indicators (HIs) are derived, including several novel features introduced for the first time. Five fundamental machine learning models-including backpropagation neural networks (BPNN), regression trees (RT), and three types of linear regression (Ridge, Lasso, and Elastic Net)-are trained on these features, with hyperparameter optimization conducted via random search. The best-performing model, RT, is further refined through seven feature selection techniques. Experimental results demonstrate that selecting only the top five features using sequential feature selection (backward) (SFS_backward) and recursive feature elimination (RFE) significantly enhances performance. Compared to using all features, SFS_backward and RFE reduce root mean square error (RMSE) by 12.8 % and 12.5 %, respectively, while mean absolute error (MAE) decreases by 13.1 % and 15.2 %. The proposed methodology also outperforms conventional and deep learning approaches, achieving up to a 127.0 % reduction in RMSE and 113.3 % in MAE. These findings underscore the potential of statistical feature engineering and selection to enhance SOH estimation accuracy while reducing model complexity.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofINTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCEen_US
dc.subjectState of Health (SOH) Estimationen_US
dc.subjectFeature Selectionen_US
dc.subjectMachine Learningen_US
dc.subjectCC-CV Charging Curvesen_US
dc.subjectLithium-ion Batteriesen_US
dc.titleEnhanced state of health estimation for lithium-ion batteries using statistical feature extraction and feature selectionen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ijoes.2025.101012-
dc.identifier.isiWOS:001482093700001-
dc.relation.journalvolume20en_US
dc.relation.journalissue6en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
顯示於:輪機工程學系
顯示文件簡單紀錄

Page view(s)

21
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋