Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 生命科學暨生物科技學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/5682
標題: Synthesis of molybdenum-silver orthophosphate composites for the visible-light photocatalytic degradation of various dyestuff and phenol
作者: Wei, Tzu-Ting
Chang, Shun-An
Lyu, Rong-Jhe
Huang, Chih-Ching 
Wu, Tsunghsueh
Lin, Yang-Wei
關鍵字: DOPED AG3PO4;GRAPHENE OXIDE;NANO-HYBRIDS;ACTIVE-SITES;RHODAMINE-B;PERFORMANCE;NANOPARTICLES;STABILITY;EVOLUTION
公開日期: 二月-2020
出版社: SPRINGER
卷: 31
期: 3
起(迄)頁: 2177-2189
來源出版物: J MATER SCI-MATER EL
摘要: 
Molybdenum-silver orthophosphate (Mo-Ag3PO4) composites were synthesized through a simple co-precipitation method. Structure and optical characterization by X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, and UV-Vis diffused reflectance spectroscopy were used to elucidate morphology, structure, and topology of these newly developed materials. The photocatalytic performance of Mo-Ag3PO4 composites toward the degradation of Rhodamine B (RhB) was investigated, and the results proved that the degradation rate of RhB in Mo-Ag3PO4 composites (the mass ratio percentages of Mo-2(OCOCH3)(4) to AgNO3 were controlled as 1%, S2) was 0.2365 min(-1), which was approximated to 103 and 1.2 times higher than that of Ag2O.MoO3 and bare Ag3PO4, respectively. In the stability study, Mo-Ag3PO4 composite (S2) exhibited no apparent loss of activity after four catalytic usages (92.4% degradation efficiency) compared with Ag3PO4 (45.5% degradation efficiency), which confirmed its stability. The feasibility of this Mo-Ag3PO4 composite (S2) was validated according to its ability to degrade RhB in environmental water samples, which also demonstrated its high photocatalytic activity. Hole and oxygen radicals are the two main reactive species generated photocatalytically in the mechanism from the light irradiation on Mo-Ag3PO4 composite (S2). The enhanced photocatalytic activity of Mo-Ag3PO4 composite (S2) could be attributed to a low electron-hole recombination rate, and highly efficient charge separation. Thus, a sustainable, low-power (merely 0.38 W/cm(2)) water treatment option by visible light was demonstrated.
URI: http://scholars.ntou.edu.tw/handle/123456789/5682
ISSN: 0957-4522
DOI: 10.1007/s10854-019-02743-6
顯示於:生命科學暨生物科技學系
06 CLEAN WATER & SANITATION
07 AFFORDABLE & CLEAN ENERGY

顯示文件完整紀錄

Page view(s)

196
上周
0
上個月
9
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋