Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 生命科學暨生物科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/5698
DC FieldValueLanguage
dc.contributor.authorYang, Pei-Chiaen_US
dc.contributor.authorLin, Pei-Hsuanen_US
dc.contributor.authorHuang, Chih-Chingen_US
dc.contributor.authorWu, Tsunghsuehen_US
dc.contributor.authorLin, Yang-Weien_US
dc.date.accessioned2020-11-19T10:40:09Z-
dc.date.available2020-11-19T10:40:09Z-
dc.date.issued2020-09-
dc.identifier.issn0026-265X-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/5698-
dc.description.abstractAnthropogenic mercury (Hg) presents serious risks to the surroundings and public health due to its toxicity and bioaccumulation. In this study, a new assay was developed to combat mercury-related issues, and it is based on surface-enhanced Raman scattering (SERS) on an active paper substrate for rapid Hg(II) determination. The sensing principle is based on the hindering effect of Hg(II) on the catalytic growth of SERS-active gold nanoparticles (AuNPs) on a hydrophobically patterned paper substrate. 4-mercaptobenzonic acid (4-MBA) was chosen as an effective Raman reporter molecule, and its Raman signal was enhanced by surface plasmonic 2-[4-(2-hydroxyethel) piperazine-1-yl]ethanesulfonic acid-stabilized gold nanostars (HEPES-AuNSs) on a piece of paper with a hydrophobic surface. After adding a Hg(II) analyte solution to this SERS substrate, an amalgam formed at the solid-liquid interface of the HEPES-AuNSs. The formation of the AuHg amalgam resulted in the dissolution of the branches of the HEPES-AuNSs. In the presence of a growth solution (mixture of Au(III), HCl, and H2O2), the remaining HEPES-AuNSs and the AuHg amalgams acted as seeds to form small AuNPs, resulting in a weak SERS signal of 4-MBA (Raman shift at 1590 cm(-1)). Solution concentration, temperature, and treatment time were optimized to realize a significant decrease in the Raman intensity of 4-MBA when the paper sensor was exposed to Hg(II). The Raman intensity decreased with the increasing concentration of Hg(II) ions in the range of 0.1 nM-1.0 mu M (R-2 = 0.98), with a limit of detection (S/N = 3.0) of 0.03 nM. For practicality, the proposed paper substrate was examined by estimating Hg(II) concentrations in environmental water samples (i.e., seawater and pond water) and the certified standard of SRM 1641d through standard addition and a recovery study. The promising selectivity, sensitivity, and reproducibility of the proposed paper sensor constitute substantial progress toward the portable detecting mercury in real water samples, which can facilitate crucial surrounding monitoring.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofMICROCHEM Jen_US
dc.subjectMERCURY IIen_US
dc.subjectSPECTROSCOPYen_US
dc.subjectCADMIUMen_US
dc.subjectLEADen_US
dc.titleDetermination of Hg(II) based on the inhibited catalytic growth of surface-enhanced Raman scattering-active gold nanoparticles on a patterned hydrophobic paper substrateen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.microc.2020.104983-
dc.identifier.isiWOS:000566863000006-
dc.identifier.url<Go to ISI>://WOS:000566863000006
dc.relation.journalvolume157en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptDepartment of Bioscience and Biotechnology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCenter of Excellence for the Oceans-
crisitem.author.orcid0000-0002-0363-1129-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
Appears in Collections:生命科學暨生物科技學系
03 GOOD HEALTH AND WELL-BEING
Show simple item record

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
1
checked on Jun 27, 2023

Page view(s)

139
Last Week
0
Last month
2
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback