Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 地球科學研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/9014
DC FieldValueLanguage
dc.contributor.authorChiu, Yung-Chiaen_US
dc.contributor.authorChiang, Chih-Weien_US
dc.contributor.authorLee, Tsung-Yuen_US
dc.date.accessioned2020-11-20T12:04:21Z-
dc.date.available2020-11-20T12:04:21Z-
dc.date.issued2017-10-
dc.identifier.issn0273-1223-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/9014-
dc.description.abstractThe aim of this study is to examine the potential of adaptive neuro fuzzy inference system (ANFIS) to estimate biochemical oxygen demand (BOD). To illustrate the applicability of ANFIS method, the upstream catchment of Feitsui Reservoir in Taiwan is chosen as the case study area. The appropriate input variables used to develop the ANFIS models are determined based on the t-test. The results obtained by ANFIS are compared with those by multiple linear regression (MLR) and artificial neural networks (ANNs). Simulated results show that the identified ANFIS model is superior to the traditional MLR and nonlinear ANNs models in terms of the performance evaluated by the Pearson coefficient of correlation, the root mean square error, the mean absolute percentage, and the mean absolute error. These results indicate that ANFIS models are more suitable than ANNs or MLR models to predict the nonlinear relationship within the variables caused by the complexity of aquatic systems and to produce the best fit of the measured BOD concentrations. ANFIS can be seen as a powerful predictive alternative to traditional water quality modeling techniques and extended to other areas to improve the understanding of river pollution trends.en_US
dc.language.isoen_USen_US
dc.publisherIWA PUBLISHINGen_US
dc.relation.ispartofWATER SCI TECHNOLen_US
dc.subjectRIVER WATER-QUALITYen_US
dc.subjectHYDROLOGICAL TIME-SERIESen_US
dc.subjectDISSOLVED-OXYGENen_US
dc.subjectNETWORKen_US
dc.subjectRUNOFFen_US
dc.subjectALGORITHMSen_US
dc.subjectMANAGEMENTen_US
dc.subjectSTREAMFLOWen_US
dc.subjectMODELSen_US
dc.subjectLOGICen_US
dc.titlePrediction of biochemical oxygen demand at the upstream catchment of a reservoir using adaptive neuro fuzzy inference systemen_US
dc.typejournal articleen_US
dc.identifier.doi10.2166/wst.2017.359-
dc.identifier.isiWOS:000412778000014-
dc.identifier.url<Go to ISI>://WOS:000412778000014
dc.relation.journalvolume76en_US
dc.relation.journalissue7en_US
dc.relation.pages1739-1753en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Ocean Science and Resource-
crisitem.author.deptInstitute of Earth Sciences-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Ocean Science and Resource-
Appears in Collections:地球科學研究所
06 CLEAN WATER & SANITATION
11 SUSTAINABLE CITIES & COMMUNITIES
Show simple item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

155
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback