http://scholars.ntou.edu.tw/handle/123456789/22788
標題: | Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metamolecules | 作者: | Hsiang-Ting Lin Chiao-Yun Chang Pi-Ju Cheng Ming-Yang Li Chia-Chin Cheng Shu-Wei Chang Lance L. J. Li Chih-Wei Chu Pei-Kuen Wei Min-Hsiung Shih |
關鍵字: | VALLEY POLARIZATION;MONOLAYER;MOS2;LIGHT;OPTOELECTRONICS;CHIRALITY;EMISSION;PROGRESS | 公開日期: | 四月-2018 | 出版社: | AMER CHEMICAL SOC | 卷: | 10 | 期: | 18 | 起(迄)頁: | 15996–16004 | 來源出版物: | ACS Appl. Mater. Interfaces | 摘要: | Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe2) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe2 was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/22788 | ISSN: | 1944-8244 | DOI: | 10.1021/acsami.8b01472 |
顯示於: | 電機工程學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。