http://scholars.ntou.edu.tw/handle/123456789/22788
Title: | Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metamolecules | Authors: | Hsiang-Ting Lin Chiao-Yun Chang Pi-Ju Cheng Ming-Yang Li Chia-Chin Cheng Shu-Wei Chang Lance L. J. Li Chih-Wei Chu Pei-Kuen Wei Min-Hsiung Shih |
Keywords: | VALLEY POLARIZATION;MONOLAYER;MOS2;LIGHT;OPTOELECTRONICS;CHIRALITY;EMISSION;PROGRESS | Issue Date: | Apr-2018 | Publisher: | AMER CHEMICAL SOC | Journal Volume: | 10 | Journal Issue: | 18 | Start page/Pages: | 15996–16004 | Source: | ACS Appl. Mater. Interfaces | Abstract: | Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe2) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe2 was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/22788 | ISSN: | 1944-8244 | DOI: | 10.1021/acsami.8b01472 |
Appears in Collections: | 電機工程學系 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.