Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋事務與資源管理研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/10044
Title: Life history traits and exploitation affect the spatial mean-variance relationship in fish abundance
Authors: Ting-Chun Kuo 
Sandip Mandal
Atsushi Yamauchi
Chih‐hao Hsieh
Keywords: demographic process;size‐truncation;spatial heterogeneity;Taylor's power law
Issue Date: Sep-2016
Journal Volume: 97
Journal Issue: 5
Start page/Pages: 1251-1259
Source: ECOLOGY 
Abstract: 
Fishing is expected to alter the spatial heterogeneity of fishes. As an effective index to quantify spatial heterogeneity, the exponent b in Taylor's power law (V = aMb) measures how spatial variance (V) varies with changes in mean abundance (M) of a population, with larger b indicating higher spatial aggregation potential (i.e., more heterogeneity). Theory predicts b is related with life history traits, but empirical evidence is lacking. Using 50‐yr spatiotemporal data from the California Current Ecosystem, we examined fishing and life history effects on Taylor's exponent by comparing spatial distributions of exploited and unexploited fishes living in the same environment. We found that unexploited species with smaller size and generation time exhibit larger b, supporting theoretical prediction. In contrast, this relationship in exploited species is much weaker, as the exponents of large exploited species were higher than unexploited species with similar traits. Our results suggest that fishing may increase spatial aggregation potential of a species, likely through degrading their size/age structure. Results of moving‐window cross‐correlation analyses on b vs. age structure indices (mean age and age evenness) for some exploited species corroborate our findings. Furthermore, through linking our findings to other fundamental ecological patterns (occupancy‐abundance and size‐abundance relationships), we provide theoretical arguments for the usefulness of monitoring the exponent b for management purposes. We propose that age/size‐truncated species might have lower recovery rate in spatial occupancy, and the spatial variance‐mass relationship of a species might be non‐linear. Our findings provide theoretical basis explaining why fishery management strategy should be concerned with changes to the age and spatial structure of exploited fishes.
URI: http://scholars.ntou.edu.tw/handle/123456789/10044
ISSN: 0012-9658
DOI: ://WOS:000375566800014
://WOS:000375566800014
://WOS:000375566800014
://WOS:000375566800014
10.1890/15-1270.1
Appears in Collections:海洋事務與資源管理研究所

Show full item record

Page view(s)

43
Last Week
0
Last month
0
checked on Oct 13, 2022

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback