Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/10915
標題: Comparing lazy and eager learning models for water level forecasting in river-reservoir basins of inundation regions
作者: Chih-Chiang Wei 
關鍵字: Eager learning;Lazy learning;Prediction;Water level;Basin
公開日期: 一月-2015
卷: 63
來源出版物: Environmental Modelling & Software
摘要: 
This study developed a methodology for formulating water level models to forecast river stages during typhoons, comparing various models by using lazy and eager learning approaches. Two lazy learning models were introduced: the locally weighted regression (LWR) and the k-nearest neighbor (kNN) models. Their efficacy was compared with that of three eager learning models, namely, the artificial neural network (ANN), support vector regression (SVR), and linear regression (REG). These models were employed to analyze the Tanshui River Basin in Taiwan. The data collected comprised 50 historical typhoon events and relevant hourly hydrological data from the river basin during 1996–2007. The forecasting horizon ranged from 1 h to 4 h. Various statistical measures were calculated, including the correlation coefficient, mean absolute error, and root mean square error. Moreover, significance, computation efficiency, and Akaike information criterion were evaluated. The results indicated that (a) among the eager learning models, ANN and SVR yielded more favorable results than REG (based on statistical analyses and significance tests). Although ANN, SVR, and REG were categorized as eager learning models, their predictive abilities varied according to various global learning optimizers. (b) Regarding the lazy learning models, LWR performed more favorably than kNN. Although LWR and kNN were categorized as lazy learning models, their predictive abilities were based on diverse local learning optimizers. (c) A comparison of eager and lazy learning models indicated that neither were effective or yielded favorable results, because the distinct approximators of models that can be categorized as either eager or lazy learning models caused the performance to be dependent on individual models.
URI: http://scholars.ntou.edu.tw/handle/123456789/10915
ISSN: 1364-8152
DOI: ://WOS:000347362900012
://WOS:000347362900012
10.1016/j.envsoft.2014.09.026
://WOS:000347362900012
://WOS:000347362900012
顯示於:海洋環境資訊系

顯示文件完整紀錄

Page view(s)

175
上周
1
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋