Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/10932
Title: Derived operating rules for a reservoir operation system: Comparison of decision trees, neural decision trees and fuzzy decision trees
Authors: Chih-Chiang Wei 
Nien-Sheng Hsu
Issue Date: Feb-2008
Journal Volume: 44
Journal Issue: 2
Start page/Pages: 2428-
Source: Water Resources Research
Abstract: 
This article compares the decision-tree algorithm (C5.0), neural decision-tree algorithm (NDT) and fuzzy decision-tree algorithm (FIDs) for addressing reservoir operations regarding water supply during normal periods. The conventional decision-tree algorithm, such as ID3 and C5.0, executes rapidly and can easily be translated into if-then-else rules. However, the C5.0 algorithm cannot discover dependencies among attributes and cannot treat the non-axis-parallel class boundaries of data. The basic concepts of the two algorithms presented are: (1) NDT algorithm combines the neural network technologies and conventional decision-tree algorithm capabilities, and (2) FIDs algorithm extends to apply fuzzy sets for all attributes with membership function grades and generates a fuzzy decision tree. In order to obtain higher classification rates in FIDs, the flexible trapezoid fuzzy sets are employed to define membership functions. Furthermore, an intelligent genetic algorithm is utilized to optimize the large number of variables in fuzzy decision-tree design. The applicability of the presented algorithms is demonstrated through a case study of the Shihmen Reservoir system. A network flow optimization model for analyzing long-term supply demand is employed to generate the input-output patterns. Findings show superior performance of the FIDs model in contrast with C5.0, NDT and current reservoir operating rules.
URI: http://scholars.ntou.edu.tw/handle/123456789/10932
ISSN: 0043-1397
DOI: 10.1029/2006wr005792
://WOS:000253535900001
Appears in Collections:海洋環境資訊系

Show full item record

Page view(s)

139
Last Week
1
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback