Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/1202
標題: The method of two-point angular basis function for solving Laplace equation
作者: Chung-Lun Kuo 
Wei-Chung Yeih 
Cheng-Yu Ku 
Chia-Ming Fan 
關鍵字: Two-point angular basis function;Cracklets;Logarithm singularity;Multiply connected domain
公開日期: 九月-2019
卷: 106
起(迄)頁: 264-274
來源出版物: Engineering Analysis with Boundary Elements
摘要: 
In this paper, an approach to improve the method of angular basis function (MABF) proposed by Young et al. (2015) is proposed. Instead of using lnr in the method of fundamental solution (MFS), the MABF adopts θ to construct the solution. However, since the nature of θ introduces multiple values along the branch cut such that to avoid the branch cut passing through the domain is an important issue (Li et al., 2018). Noticing this difficulty, Alves et al. (2018) first proposed a remedy which used a pair of two points to restrict the discontinuity appearing only along the line segment between two points, and they named this approach as cracklets. In this article, the two-point angular basis function (cracklets) is investigated deeply. We explain why for a multiply connected domain with a logarithm singular solution the cracklets will encounter failure. To resolve this difficulty, one can adopt the proposed method (cracklets) with the MFS or one can use domain decomposition method to separate the domain into several singly connected domains. Seven numerical examples are provided to show the validity of this method, and examples for dealing with the multiply connected domain are focused to support our claims.
URI: http://scholars.ntou.edu.tw/handle/123456789/1202
ISSN: 0955-7997
DOI: 10.1016/j.enganabound.2019.05.018
顯示於:河海工程學系

顯示文件完整紀錄

WEB OF SCIENCETM
Citations

3
checked on 2023/6/22

Page view(s)

250
上周
0
上個月
1
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋