Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 環境生物與漁業科學學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/12561
Title: Typhoon-enhanced upwelling and its influence on fishing activities in the southern East China Sea
Authors: Yi Chang
Jui-Wen Chan
Yuan-Chao Angelo Huang
Wei-Quan Lin,
Ming-An Lee 
Kuo- Tien Lee
Cheng-Hsin Liao 
Kae-Yih Wang
Yi-Chun Kuo
Issue Date: 2014
Journal Volume: 35
Journal Issue: 17
Start page/Pages: 6561-6572
Source: International Journal of Remote Sensing
Abstract: 
Ocean–atmosphere interactions before and after the passage of Typhoons Haitang, Fung-wong, and Morakot across the southern region of the East China Sea (ECS) were examined by assessing satellite measurements of sea surface temperature (SST) and chlorophyll-a (chl-a) concentration in conjunction with wind data. In terms of the satellite-derived data, the SST declined and chl-a concentration increased after the passage of the typhoons, and this could have resulted from the upwelling induced by typhoons via their long-duration, strong winds. According to fisheries data collected after the passing of Typhoon Morakot, the major fishing grounds of the torchlight fishery were found to have shifted northwards from the northern tip of Taiwan to the southern ECS. Moreover, the major target fish species changed from skipjack tuna (pre-typhoon) to squid (post-typhoon), signifying that the typhoon-enhanced upwelling might have caused the skipjack tuna, which typically prefer warm water, to have migrated elsewhere. In contrast, the nutrient-rich, upwelled water might have directly led to increases in chl-a concentrations and contributed the increase in local squid densities. This study suggests that typhoons can cause marked cooling of the sea surface as well as enhance upwelling that previously resulted in not only chl-a increases but also changes of local fish communities and, consequently, fishing activities.
URI: http://scholars.ntou.edu.tw/handle/123456789/12561
ISSN: 0143-1161
DOI: 10.1080/01431161.2014.958248
Appears in Collections:環境生物與漁業科學學系

Show full item record

WEB OF SCIENCETM
Citations

15
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

358
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback