Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/12925
Title: Analysis of suspension and heat transfer characteristics of Al2O3 nanofluids prepared through ultrasonic vibration
Authors: Cherng-Yuan Lin 
Jung-Chang Wang 
Teng-Chieh Chen 
Keywords: nanofluids;Surfactant;Hydrophile lipophile balance (HLB);Thermal conductivity;Suspension characteristics
Issue Date: Dec-2011
Publisher: Elsevier
Journal Volume: 88
Journal Issue: 12
Start page/Pages: 4527-4533
Source: Applied Energy
Abstract: 
Nanofluids that contain nanoparticles with excellent heat transfer characteristics dispersed in a continuous liquid phase are expected to exhibit superior thermal and fluid characteristics to those in a single liquid phase primarily because of their much greater collision frequency and larger contact surface between solid nanoparticles and the liquid phase. One of the major challenges in the use of nanofluids to dissipate the heat generated in electronic equipment such as LEDs is nanoparticles’ precipitation due to their poor suspension in the fluid after periods of storage or operation, thereby leading to deterioration in the nanofluids’ heat transfer rate. In this study, ultrasonic vibration was employed to prepare Al2O3 nanofluids with a surfactant, a dispersant, and a combination of the two to evaluate their suspension and heat transfer characteristics. The experimental results show the Al2O3 nanofluid prepared with a non-ionic surfactant with a hydrophile lipophile balance (HLB) value of 12 to have the lowest nanoparticle precipitation rate and, accordingly, the highest degree of emulsification stability. Moreover, the nanofluids prepared with both the dispersant and surfactant had the greatest dynamic viscosity and lowest degree of thermal conductivity. Both the precipitation rate and dynamic viscosity of the nanoparticles increased, and their thermal conductivity coefficient decreased, the longer they remained in the Al2O3 nanofluids. Further, an increase in operating temperature caused an increase in the thermal conductivity coefficients of all of the Al2O3 nanofluids considered.
URI: http://scholars.ntou.edu.tw/handle/123456789/12925
ISSN: 0306-2619
DOI: 10.1016/j.apenergy.2011.05.035
Appears in Collections:輪機工程學系

Show full item record

WEB OF SCIENCETM
Citations

78
Last Week
0
Last month
0
checked on Jun 19, 2023

Page view(s)

247
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback