Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/13042
Title: Emulsification characteristics of nano-emulsions of solketal in diesel prepared using microwave irradiation
Authors: Cherng-Yuan Lin 
Shih-Ming Tsai
Issue Date: Jun-2018
Journal Volume: 221
Source: Fuel
Abstract: 
Glycerol acetonide, also termed solketal, which is chemically derived from bio-glycerol, was used as a combustion improver in the dispersed emulsion phase in this study. Nano-emulsions of ultra-low sulfur diesel (ULSD) containing nano-sized droplets of solketal were produced using microwave irradiation and compared with those produced by mechanical homogenizing. A non-ionic surfactant mixture of Tween 80 and Span 80, with a combined hydrophile-lipophile balance (HLB) adjusted to 10 by the weight proportion of the two surfactants was added to assist the emulsion formation. The characteristics of the emulsions produced using the two methods were analyzed and compared. The experimental results show that nano-emulsions can only form when up to 15 wt% of surfactant and no more than 5 wt% of solketal are added. The nano-emulsions from microwave irradiation had a larger mean droplet size, more concentrated one-peak distribution of droplet size, and lower kinematic viscosity and emulsification stability (ES) than those from the mechanical homogenizer. Higher solketal content in the emulsion increased the mean droplet size and kinematic viscosity of the nano-emulsions prepared using either method, and decreased the emulsification stability. The nano-emulsions with 3 wt% solketal in the dispersed phase also had superior characteristics including the lowest mean droplet size and highest ES. This is thus suggested to be the optimum composition.
URI: http://scholars.ntou.edu.tw/handle/123456789/13042
ISSN: 0016-2361
DOI: 10.1016/j.fuel.2018.02.091
://WOS:000429421200017
://WOS:000429421200017
://WOS:000429421200017
Appears in Collections:輪機工程學系

Show full item record

WEB OF SCIENCETM
Citations

4
checked on Mar 8, 2022

Page view(s)

148
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback