Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境與生態研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/15373
Title: The surface distributions of carbon chemistry parameters in the East China Sea in summer2007
Authors: Wen-Chen Chou
Gwo-Ching Gong 
Dd Sheu
Chin-Chang Hung
Tsung-Fan Tseng
Issue Date: Jul-2009
Publisher: American Geophysical Union
Journal Volume: 114
Abstract: 
Comprehensive carbon chemistry data including total alkalinity (TA), dissolved inorganic carbon (DIC), pH, fugacity of CO2, and other pertinent data (i.e., temperature, salinity, and levels of nitrate and chlorophyll a) were measured in surface waters of the East China Sea (ECS) shelf in July 2007. The results show that spatial variations in these parameters closely correspond to the distributions of various water types. The Changjiang Diluted Water (CDW) and Yellow Sea Water (YSW) areas are the two major sinks of atmospheric CO2; the Coastal Upwelling Water (CUW) area is the most important CO2 source, whereas the Kuroshio Water and Taiwan Current Warm Water areas are weak sources. The entire ECS acted as a sink for atmospheric CO2, with a flux of -2.4 to -4.3 mmol C m-2 d-1 during the study period. Identification of the CUW source area suggests that previous studies might have overestimated CO2 uptake by the ECS in summer. Our results further suggest that high biological production might be responsible for the strong sink in the CDW area but that high input of TA from the Huanghe River, which led to an elevated TA/DIC ratio, could have resulted in formation of a significant CO2 sink in the YSW area. The present data set represents the most comprehensive CO2 survey in the ECS to date and can thus be used as a baseline for monitoring future changes in the CO2 system arising from the construction of the Three Gorges Dam in the middle stretch of the Changjiang River.
URI: http://scholars.ntou.edu.tw/handle/123456789/15373
DOI: 10.1029/2008JC005128
Appears in Collections:海洋環境與生態研究所

Show full item record

Page view(s)

173
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback