Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/15603
標題: Inhibition of yeast (1,3)-β-glucan synthase by phospholipase A2 and its reaction products
作者: Yuan-Tih Ko 
David J. Frost
Chi-Tang Ho
Richard D. Ludescher
Bruce P. Wesserman
關鍵字: (1,3)-β-Glucan synthase;Phospholipase A2;Fluorescence anisotropy;Antffungal compound;fatty acids;Membrane perturbation
公開日期: 13-七月-1994
出版社: Elsevier
卷: 1193
期: 1
起(迄)頁: 31-40
來源出版物: Biomembranes
摘要: 
Fungal (1,3)-β-glucan synthases are sensitive to a wide range of lipophilic inhibitors and it has been proposed that enzyme activity is highly sensitive to perturbations of the membrane environment. Yeast membranes were exposed to phospholipases and various lipophilic compounds, and the resultant effects on glucan synthase activity were ascertained. Glucan synthase from Saccharomyces cerevisiae was rapidly inactivated by phospholipase A2 (PLA2), and to a lesser extent by phospholipase C. Inactivation was time and dose-dependent and was protected against by EDTA and fatty-acid binding proteins (bovine and human serum albumins). Albumins also partially protected against inhibition by papulacandin B. PLA2 reaction products were structurally characterized and it was shown that fatty acids and lysophospholipids were the inhibitory moieties, with no novel inhibitory compounds apparent. Glucan synthase was inhibited by a range of fatty acids, monoglycerides and lysophospholipids. Inhibition by fatty acids was non-competitive, and progressive binding of [14C]oleic acid correlated with activity loss. Fluorescence anisotropy studies using diphenylhexatriene (DPH) confirm that fatty acids increase membrane fluidity. These results are consistent with proposais suggesting that glucan synthase inhibition is due in part to non-specific detergent-like disruption of the membrane environment, in addition to direct interactions of lipophilic inhibitors with specific target sites on the enzyme complex.
URI: http://scholars.ntou.edu.tw/handle/123456789/15603
DOI: https://doi.org/10.1016/0005-2736(94)90329-8
顯示於:食品科學系

顯示文件完整紀錄

Page view(s)

88
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋