Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 電機資訊學院
  3. 通訊與導航工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/17259
Title: Kernel Entropy Based Extended Kalman Filter for GPS Navigation Processing
Authors: Jwo, Dah-Jing 
Lee, Jui-Tao
Keywords: GPS;satellite navigation;extended Kalman filter;entropy;correntropy;multipath;non-Gaussian
Issue Date: 1-Jan-2021
Publisher: TECH SCIENCE PRESS
Journal Volume: 68
Journal Issue: 1
Start page/Pages: 857-876
Source: CMC-COMPUTERS MATERIALS & CONTINUA
Abstract: 
This paper investigates the kernel entropy based extended Kalman filter (EKF) as the navigation processor for the Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS). The algorithm is effective for dealing with non-Gaussian errors or heavy-tailed (or impulsive) interference errors, such as the multipath. The kernel minimum error entropy (MEE) and maximum correntropy criterion (MCC) based filtering for satellite navigation system is involved for dealing with non-Gaussian errors or heavy-tailed interference errors or outliers of the GPS. The standard EKF method is derived based on minimization of mean square error (MSE) and is optimal only under Gaussian assumption in case the system models are precisely established. The GPS navigation algorithm based on kernel entropy related principles, including the MEE criterion and the MCC will be performed, which is utilized not only for the time-varying adaptation but the outlier type of interference errors. The kernel entropy based design is a new approach using information from higher-order signal statistics. In information theoretic learning (ITL), the entropy principle based measure uses information from higher-order signal statistics and captures more statistical information as compared to MSE. To improve the performance under non-Gaussian environments, the proposed filter which adopts the MEE/MCC as the optimization criterion instead of using the minimum mean square error (MMSE) is utilized for mitigation of the heavy-tailed type of multipath errors. Performance assessment will be carried out to show the effectiveness of the proposed approach for positioning improvement in GPS navigation processing.
URI: http://scholars.ntou.edu.tw/handle/123456789/17259
ISSN: 1546-2218
DOI: 10.32604/cmc.2021.016894
Appears in Collections:通訊與導航工程學系

Show full item record

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

203
Last Week
0
Last month
1
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback