Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 海洋生物研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/21249
Title: A Trophic Model of a Sandy Barrier Lagoon at Chiku in Southwestern Taiwan
Authors: Lin, H.J.
Kwang-Tsao Shao 
S.R. Kuo
H.C. Hsieh
S.L. Wong
I.M. Chen
W.T. Lo
J.J. Jung
Keywords: biomass budget;oyster-hanging culture;fishery activity;eutrophication
Issue Date: May-1999
Journal Volume: 48
Journal Issue: 5
Start page/Pages: 578-588
Source: Estuarine Coastal and Shelf Science
Abstract: 
Using the ECOPATH 3.0 software system, a balanced trophic model of a sandy barrier lagoon with intensive fishery activities at Chiku in tropical Taiwan was constructed. The lagoon model comprised 13 compartments. Trophic levels of the compartments varied from 1·0 for primary producers and detritus to 3·6 for piscivorous fish. Hanging-cultured oysters accounted for 39% of the harvestable fishery biomass and were the most important fishery species. The most prominent group in terms of biomass and energy flow in the lagoon was herbivorous zooplankton. Manipulations of the biomass of herbivorous zooplankton would have a marked impact on most compartments. Both total system throughput and fishery yield per unit area were high when compared to other reported marine ecosystems. This appears mainly due to high planktonic primary production, which is probably promoted by enriched river discharges draining mangroves and aquaculture ponds. Consequently, more than half of the total system throughput originates from primary producers in the lagoon. Although half of the primary production was not immediately used by upper trophic levels and flowed into the detrital pool, most of the detritus was directly consumed, passed up the food web and was exported to the fishery. Thus only a small proportion of energy was recycled through detritus pathways. This mechanism produces short pathways with high trophic efficiencies at higher trophic levels. The high fishery yield in the lagoon is due to high primary production and short pathways. This is the first model of a tropical sandy barrier lagoon with intensive fishery activities and thus may serve as a basis for future comparisons and ecosystem management.
URI: http://scholars.ntou.edu.tw/handle/123456789/21249
DOI: 10.1006/ecss.1998.0457
Appears in Collections:海洋生物研究所

Show full item record

WEB OF SCIENCETM
Citations

43
Last Week
0
Last month
checked on Jun 19, 2023

Page view(s)

92
Last Week
0
Last month
5
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback