Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 水產養殖學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22110
Title: Colaconema formosanum, Sarcodia suae, and Nostoc commune as Fermentation Substrates for Bioactive Substance Production
Authors: Lee, Meng-Chou 
Huang, Chin-Yi
Lai, Chin-Ling
Yeh, Han-Yang
Huang, Jing
Lung, Wei Qing Chloe
Lee, Po-Tsang 
Nan, Fan-Hua 
Keywords: CELL-WALL;CHLOROPHYLL;BIOETHANOL
Issue Date: Jul-2022
Publisher: MDPI
Journal Volume: 8
Journal Issue: 7
Source: FERMENTATION-BASEL
Abstract: 
Bioactive compounds extracted from natural renewable sources have attracted an increased interest from both industry and academia. Recently, algae have been highlighted as promising sources of bioactive compounds, such as polyphenols, polysaccharides, fatty acids, proteins, and pigments, which can be used as functional ingredients in many industrial applications. Therefore, a simple green extraction and purification methodology capable of recovering biocompounds from algal biomass is of extreme importance in commercial production. In this study, we evaluated the application of three valuable algae (Colaconema formosanum, Sarcodia suae, and Nostoc commune) in combination with Pseudoalteromonas haloplanktis (type strain ATCC 14393) for the production of versatile compounds. The results illustrate that after 6 h of first-stage fermentation, the production of phycobiliproteins in C. formosanum was significantly increased by 156.2%, 188.9%, and 254.17% for PE, PC, and APC, respectively. This indicates that the production of phycobiliproteins from algae can be enhanced by P. haloplanktis. Furthermore, we discovered that after S. suae and N. commune were fermented with P. haloplanktis, mannose was produced. In this study, we describe a feasible biorefinery process for the production of phycobiliproteins and mannose by fermenting marine macroalgae with cyanobacteria. We believe it is worth establishing a scale-up technique by applying this fermentation method to the production of phycobiliproteins and mannose in the future.
URI: http://scholars.ntou.edu.tw/handle/123456789/22110
ISSN: 2311-5637
DOI: 10.3390/fermentation8070343
Appears in Collections:水產養殖學系
07 AFFORDABLE & CLEAN ENERGY
14 LIFE BELOW WATER

Show full item record

Page view(s)

378
Last Week
0
Last month
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback