Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 人文社會科學院
  3. 教育研究所
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22622
標題: Supervised learning vector quantization for projecting missing weights of hierarchical neural networks
作者: Cin-Ru Chen
Liang-Ting Tsai 
Chih-Chien Yang
公開日期: 六月-2010
出版社: WSEAS
卷: 6
期: 7
起(迄)頁: 799-808
來源出版物: WSEAS Transactions on Information Science and Applications
摘要: 
A supervised learning vector quantization (LVQ) method is proposed in this paper to project stratified random samples to infer hierarchical neural networks. Comparing with two traditional methods, i.e., list-wise deletion (LWD), and non-amplified (NA), the supervised LVQ shows satisfying efficiencies and accuracies in simulation studies. The accomplishments of proposed LVQ method can be significant for sociological and psychological surveys in properly inferring the targeted populations with hierarchical neural network structure. In the numerical simulation study, successes of LVQ in projecting samples to infer the original population are further examined by experimental factors of sampling sizes, missing rates, and disproportion rates. The experimental design is to reflect practical research and under these conditions it shows the neural network approach is more accurate and reliable than its competitors.
URI: http://scholars.ntou.edu.tw/handle/123456789/22622
ISSN: 1790-0832
顯示於:教育研究所

顯示文件完整紀錄

Page view(s)

149
checked on 2025/6/30

Google ScholarTM

檢查

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋