Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 人文社會科學院
  3. 教育研究所
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22639
DC 欄位值語言
dc.contributor.authorLiang-Ting Tsaien_US
dc.contributor.authorChih-Chien Yangen_US
dc.contributor.authorTimothy Teoen_US
dc.date.accessioned2022-10-21T00:55:17Z-
dc.date.available2022-10-21T00:55:17Z-
dc.date.issued2014-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22639-
dc.description.abstractThis article aims to propose the Learning Vector Quantization (LVQ) approach to impute missing group membership and sampling weights in inferring the accuracy of population parameters of confirmatory factor analysis (CFA) models with categorical questionnaires. Survey data with missing group memberships, for example, gender, age, or ethnicity, are very familiar. However, the group memberships of examinees are critical for calculating the stratum sampling weights. Asparouhov (2005), Tsai and Yang (2008), and Yang and Tsai (2008) have described that appropriate imputation can further improve the precision of CFA model estimations. Questionnaires with categorical responses are not well established yet. In this study, a Monte Carlo simulation was conducted to compare the LVQ method with the other three existing methods (e.g., listwise-deletion, weighting-class adjustment, non-weighted). Four experimental factors, such as missing data rates, sampling sizes, disproportionate sampling, and different populations, were used to examine the performance of these four methods. The results showed that the LVQ method outperformed the other three methods in terms of accuracy of parameters of CFA model with binary or 5-category responses. The conclusion and discussion sections of this article provide for some practical guidelines.en_US
dc.language.isoen_USen_US
dc.publisherIGI globalen_US
dc.relation.ispartofEncyclopedia of Business Analytics and Optimizationen_US
dc.subjectSampling Weightsen_US
dc.subjectCFAen_US
dc.subjectListwise Deletion (LWD)en_US
dc.subjectCategorical Questionnairesen_US
dc.subjectLVQen_US
dc.subjectWeighting-Class Adjustment (WCA)en_US
dc.subjectMissing Dataen_US
dc.titleWeighting Imputation for Categorical Dataen_US
dc.typebook chapteren_US
dc.identifier.doi10.4018/978-1-4666-5202-6.ch241-
dc.relation.pages11en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypebook chapter-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Humanities and Social Sciences-
crisitem.author.deptInstitute of Education-
crisitem.author.deptTaiwan Marine Education Center-
crisitem.author.deptIntegration and Dissemination Section-
crisitem.author.deptTeacher Education Center-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Humanities and Social Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgTaiwan Marine Education Center-
crisitem.author.parentorgCollege of Humanities and Social Sciences-
顯示於:教育研究所
顯示文件簡單紀錄

Page view(s)

192
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋