Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 人文社會科學院
  3. 教育研究所
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/22639
標題: Weighting Imputation for Categorical Data
作者: Liang-Ting Tsai 
Chih-Chien Yang
Timothy Teo
關鍵字: Sampling Weights;CFA;Listwise Deletion (LWD);Categorical Questionnaires;LVQ;Weighting-Class Adjustment (WCA);Missing Data
公開日期: 一月-2014
出版社: IGI global
起(迄)頁: 11
來源出版物: Encyclopedia of Business Analytics and Optimization
摘要: 
This article aims to propose the Learning Vector Quantization (LVQ) approach to impute missing group membership and sampling weights in inferring the accuracy of population parameters of confirmatory factor analysis (CFA) models with categorical questionnaires. Survey data with missing group memberships, for example, gender, age, or ethnicity, are very familiar. However, the group memberships of examinees are critical for calculating the stratum sampling weights. Asparouhov (2005), Tsai and Yang (2008), and Yang and Tsai (2008) have described that appropriate imputation can further improve the precision of CFA model estimations. Questionnaires with categorical responses are not well established yet. In this study, a Monte Carlo simulation was conducted to compare the LVQ method with the other three existing methods (e.g., listwise-deletion, weighting-class adjustment, non-weighted). Four experimental factors, such as missing data rates, sampling sizes, disproportionate sampling, and different populations, were used to examine the performance of these four methods. The results showed that the LVQ method outperformed the other three methods in terms of accuracy of parameters of CFA model with binary or 5-category responses. The conclusion and discussion sections of this article provide for some practical guidelines.
URI: http://scholars.ntou.edu.tw/handle/123456789/22639
DOI: 10.4018/978-1-4666-5202-6.ch241
顯示於:教育研究所

顯示文件完整紀錄

Page view(s)

192
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋