Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 人文社會科學院
  3. 教育研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/22639
DC FieldValueLanguage
dc.contributor.authorLiang-Ting Tsaien_US
dc.contributor.authorChih-Chien Yangen_US
dc.contributor.authorTimothy Teoen_US
dc.date.accessioned2022-10-21T00:55:17Z-
dc.date.available2022-10-21T00:55:17Z-
dc.date.issued2014-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/22639-
dc.description.abstractThis article aims to propose the Learning Vector Quantization (LVQ) approach to impute missing group membership and sampling weights in inferring the accuracy of population parameters of confirmatory factor analysis (CFA) models with categorical questionnaires. Survey data with missing group memberships, for example, gender, age, or ethnicity, are very familiar. However, the group memberships of examinees are critical for calculating the stratum sampling weights. Asparouhov (2005), Tsai and Yang (2008), and Yang and Tsai (2008) have described that appropriate imputation can further improve the precision of CFA model estimations. Questionnaires with categorical responses are not well established yet. In this study, a Monte Carlo simulation was conducted to compare the LVQ method with the other three existing methods (e.g., listwise-deletion, weighting-class adjustment, non-weighted). Four experimental factors, such as missing data rates, sampling sizes, disproportionate sampling, and different populations, were used to examine the performance of these four methods. The results showed that the LVQ method outperformed the other three methods in terms of accuracy of parameters of CFA model with binary or 5-category responses. The conclusion and discussion sections of this article provide for some practical guidelines.en_US
dc.language.isoen_USen_US
dc.publisherIGI globalen_US
dc.relation.ispartofEncyclopedia of Business Analytics and Optimizationen_US
dc.subjectSampling Weightsen_US
dc.subjectCFAen_US
dc.subjectListwise Deletion (LWD)en_US
dc.subjectCategorical Questionnairesen_US
dc.subjectLVQen_US
dc.subjectWeighting-Class Adjustment (WCA)en_US
dc.subjectMissing Dataen_US
dc.titleWeighting Imputation for Categorical Dataen_US
dc.typebook chapteren_US
dc.identifier.doi10.4018/978-1-4666-5202-6.ch241-
dc.relation.pages11en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypebook chapter-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Humanities and Social Sciences-
crisitem.author.deptInstitute of Education-
crisitem.author.deptTaiwan Marine Education Center-
crisitem.author.deptIntegration and Dissemination Section-
crisitem.author.deptTeacher Education Center-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Humanities and Social Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgTaiwan Marine Education Center-
crisitem.author.parentorgCollege of Humanities and Social Sciences-
Appears in Collections:教育研究所
Show simple item record

Page view(s)

192
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback