Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 水產養殖學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23146
標題: Retention of ion channel genes expression increases Japanese medaka survival during seawater reacclimation
作者: Liao, Bo-Kai 
Lai, Yun-Wei
Liu, Sian-Tai
Chou, Ming-Yi
關鍵字: Ion channel;Seawater acclimation;Medaka
公開日期: 20-十月-2022
出版社: SPRINGER HEIDELBERG
來源出版物: JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMS AND ENVIRONMENTAL PHYSIOLOGY
摘要: 
Euryhaline teleosts exhibit varying acclimability to survive in environments that alternate between being hypotonic and hypertonic. Such ability is conferred by ion channels expressed by ionocytes, the ion-regulating cells in the gills or skin. However, switching between environments is physiologically challenging, because most channels can only perform unidirectional ion transportation. Coordination between acute responses, such as gene expression, and long-term responses, such as cell differentiation, is believed to strongly facilitate adaptability. Moreover, the pre-acclimation to half seawater salinity can improve the survivability of Japanese medaka (Oryzias latipes) during direct transfer to seawater; here, the ionocytes preserve hypertonic acclimability while performing hypotonic functions. Whether acclimability can be similarly induced in a closed species and their corresponding responses in terms of ion channel expression remain unclear. In the present study, Japanese medaka pre-acclimated in brackish water were noted to have higher survival rates while retaining higher expression of the three ion channel genes ATP1a1a.1, ATP1b1b, and SLC12a2a. This retention was maintained up to 2 weeks after the fish were transferred back into freshwater. Notably, this induced acclimability was not found in its close kin, Indian medaka (Oryzias dancena), the natural habitat of which is brackish water. In conclusion, Japanese medaka surpassed Indian medaka in seawater acclimability after experiencing exposure to brackish water, and this ability coincided with seawater-retention gene expression.
URI: http://scholars.ntou.edu.tw/handle/123456789/23146
ISSN: 0174-1578
DOI: 10.1007/s00360-022-01465-2
顯示於:水產養殖學系

顯示文件完整紀錄

Page view(s)

129
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋