Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境與生態研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23641
Title: Temperature Effects on Effluent Microgel Formation
Authors: Chang, Hsiao-Ming
Vazquez, Carlos, I
Shiu, Ruei-Feng 
Chin, Wei-Chun
Keywords: WWTP effluent;dissolved effluent organic matter;microgel;aggregation;temperature
Issue Date: 1-Nov-2022
Publisher: MDPI
Journal Volume: 14
Journal Issue: 22
Source: POLYMERS
Abstract: 
Wastewater treatment plant effluent is considered an important hotspot of dissolved organic matter. The behavior and transformation of dissolved effluent organic matter (dEfOM) regulate particle sedimentation, pollutant fate, microbial attachment, and biofilm formation. However, studies have so far focused on the transformation of marine and riverine organic matter, and the current knowledge of dEfOM behavior is still limited. Fluctuations in water conditions, especially temperature, may directly alter the size, assembly speed, and structure of microgels, thereby potentially disturbing fate and the transportation of organic matter. In this study, we firstly investigated the effects of temperature on the behavior and capacity of dEfOM assembly into microgels and the possible mechanism. The microgel size and granularity of dEfOM were monitored by flow cytometry. Our results suggest that, with regard to microgels, a higher temperature leads to a higher assembly capacity but also a decrease in the size distribution. By contrast, assembly at 4 degrees C reduces the relative assembly capacity but increases the microgel size and granularity. The size distribution of the formed microgels at the various temperatures was ordered as follows: 4 degrees C > 20 degrees C > 35 degrees C. The size reduction in dEfOM assembly may be closely tied to the enhancement of hydrophobic interactions. The reduction in microgel granularity in warm conditions (35 degrees C) in terms of the effluent water may be caused by thermally induced condensation. Overall, the findings demonstrate the effects of temperature on dEfOM assembly and can facilitate further relevant studies on aquatic organic particle formation during current global warming scenarios.
URI: http://scholars.ntou.edu.tw/handle/123456789/23641
DOI: 10.3390/polym14224870
Appears in Collections:海洋環境與生態研究所

Show full item record

Page view(s)

201
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback