Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23668
Title: In Situ Release of Ulvan from Crosslinked Ulvan/Chitosan Complex Films and Their Evaluation as Wound Dressings
Authors: Don, Trong-Ming
Ma, Chen-Han
Huang, Yi-Cheng 
Keywords: ulvan;chitosan;wound dressing;antioxidant;anti-inflammatory;wound healing
Issue Date: 1-Dec-2022
Publisher: MDPI
Journal Volume: 14
Journal Issue: 24
Source: POLYMERS
Abstract: 
When a wound forms due to any injuries, it should be covered with a functional wound dressing for accelerating wound healing and reducing infection. In this study, crosslinked ulvan/chitosan complex films were prepared with or without the addition of glycerol and chlorophyll, and their wound healing properties were evaluated for potential application in wound dressing. The results showed that the tensile strength and elongation at break of the prepared ulvan/chitosan complex films were 2.23-2.48 MPa and 83.8-108.5%, respectively. Moreover, their water vapor transmission rates (WVTRs) were in the range of 1791-2029 g/m(2)-day, providing suitable environment for wound healing. Particularly, these complex films could release ulvan in situ in a short time, and the film with chlorophyll added had the highest release rate, reaching 62.8% after 20 min of releasing. In vitro studies showed that they were biocompatible toward NIH 3T3 and HaCaT cells, and promoted the migration of NIH 3T3 cells. These complex films could protect HaCaT cells from oxidative damage and reduce the production of reactive oxygen species (ROS); the addition of chlorophyll also effectively reduced the inflammatory response induced by LPS as found in the reduction in both NO and IL-6. Animal models showed that the complex films added with glycerol and chlorophyll could promote wound healing in the early stage, while accelerating the regeneration of dermal glands and collagen production. Briefly, these ulvan/chitosan complex films had good physiochemical properties and biological activity, and could accelerate wound healing both in vitro and in vivo.
URI: http://scholars.ntou.edu.tw/handle/123456789/23668
DOI: 10.3390/polym14245382
Appears in Collections:食品科學系

Show full item record

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
checked on Jun 27, 2023

Page view(s)

186
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback