Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品安全與風險管理研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23682
DC FieldValueLanguage
dc.contributor.authorYang, Ying-Feien_US
dc.contributor.authorLin, Yi-Junen_US
dc.contributor.authorYou, Shu-Hanen_US
dc.contributor.authorLu, Tien-Hsuanen_US
dc.contributor.authorChen, Chi-Yunen_US
dc.contributor.authorWang, Wei-Minen_US
dc.contributor.authorLiao, Chung-Minen_US
dc.date.accessioned2023-02-15T01:17:55Z-
dc.date.available2023-02-15T01:17:55Z-
dc.date.issued2022-12-22-
dc.identifier.issn0944-1344-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/23682-
dc.description.abstractThe Wells-Riley model invokes human physiological and engineering parameters to successfully treat airborne transmission of infectious diseases. Applications of this model would have high potentiality on evaluating policy actions and interventions intended to improve public safety efforts on preventing the spread of COVID-19 in an enclosed space. Here, we constructed the interaction relationships among basic reproduction number (R-0) - exposure time - indoor population number by using the Wells-Riley model to provide a robust means to assist in planning containment efforts. We quantified SARS-CoV-2 changes in a case study of two Wuhan (Fangcang and Renmin) hospitals. We conducted similar approach to develop control measures in various hospital functional units by taking all accountable factors. We showed that inhalation rates of individuals proved crucial for influencing the transmissibility of SARS-CoV-2, followed by air supply rate and exposure time. We suggest a minimum air change per hour (ACH) of 7 h(-1) would be at least appropriate with current room volume requirements in healthcare buildings when indoor population number is < 10 and exposure time is < 1 h with one infector and low activity levels being considered. However, higher ACH (> 16 h(-1)) with optimal arranged-exposure time/people and high-efficiency air filters would be suggested if more infectors or higher activity levels are presented. Our models lay out a practical metric for evaluating the efficacy of control measures on COVID-19 infection in built environments. Our case studies further indicate that the Wells-Riley model provides a predictive and mechanistic basis for empirical COVID-19 impact reduction planning and gives a framework to treat highly transmissible but mechanically heterogeneous airborne SARS-CoV-2.en_US
dc.language.isoEnglishen_US
dc.publisherSPRINGER HEIDELBERGen_US
dc.relation.ispartofENVIRONMENTAL SCIENCE AND POLLUTION RESEARCHen_US
dc.subjectCOVID-19en_US
dc.subjectSARS-CoV-2en_US
dc.subjectWells-Riley modelen_US
dc.subjectAirborne infection transmissionen_US
dc.subjectHealthcare facilityen_US
dc.subjectIndoor air qualityen_US
dc.titleControl measure implications of COVID-19 infection in healthcare facilities reconsidered from human physiological and engineering aspectsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s11356-022-24815-7-
dc.identifier.isiWOS:000903270600017-
dc.identifier.eissn1614-7499-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptInstitute of Food Safety and Risk Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0003-4440-3138-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
Appears in Collections:食品安全與風險管理研究所
Show simple item record

Page view(s)

152
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback