Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 環境生物與漁業科學學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/23739
標題: Challenges and implications of predicting the spatiotemporal distribution of dengue fever outbreak in Chinese Taiwan using remote sensing data and deep learning
作者: Anno, Sumiko
Tsubasa, Hirakawa
Sugita, Satoru
Yasumoto, Shinya
Lee, Ming-An 
Sasaki, Yoshinobu
Oyoshi, Kei
關鍵字: Deep learning;U-Net;dengue fever;spatiotemporal distribution
公開日期: 14-一月-2023
出版社: TAYLOR & FRANCIS LTD
來源出版物: GEO-SPATIAL INFORMATION SCIENCE
摘要: 
Ongoing climate change has accelerated the outbreak and expansion of climate-sensitive infectious diseases such as dengue fever. Dengue fever will remain a threat until safe and effective vaccines and antiviral drugs have been developed, distributed, and administered on a global scale. By predicting the spatiotemporal distribution of dengue fever outbreaks, we can effectively implement dengue fever prevention and control. Our study aims to predict the spatiotemporal distribution of dengue fever outbreaks in Chinese Taiwan using a U-Net based encoder - decoder model with daily datasets of sea-surface temperature, rainfall, and shortwave radiation from Remote Sensing (RS) instruments and dengue fever case notification data. Although the prediction accuracy of the proposed model was low and the overlapping areas between the ground truth and pixelwise prediction were few, some of the pixels were located nearby the ground truth, suggesting that the application of RS data and deep learning may help to predict the spatiotemporal distribution of dengue fever outbreaks. With further improvements, the deep learning model might effectively learn a small amount of training data for a specific task.
URI: http://scholars.ntou.edu.tw/handle/123456789/23739
ISSN: 1009-5020
DOI: 10.1080/10095020.2022.2144770
顯示於:環境生物與漁業科學學系

顯示文件完整紀錄

Page view(s)

342
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋