Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23808
Title: Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-κB pathway and protects against neurotoxicity
Authors: Lin, Chia-Yuan 
Chen, Jing-Hsien
Fu, Ru-Huei
Tsai, Chia-Wen
Keywords: NF-KAPPA-B;DOPAMINE-INDUCED APOPTOSIS;PARKINSONS-DISEASE;CELL-DEATH;C-JUN;OXIDATIVE STRESS;HEME OXYGENASE-1;TERMINAL KINASE;EXPRESSION;ACTIVATION
Issue Date: 17-Nov-2014
Publisher: AMER CHEMICAL
Journal Volume: 27
Journal Issue: 11
Start page/Pages: 1958-1966
Source: Chemical research in toxicology
Abstract: 
Carnosic acid (CA), a diterpene found in the rosemary (Rosmarinus officinalis), has been reported to have a neuroprotective effect. Glutathione S-transferase (GST) P (GSTP) is a phase II detoxifying enzyme that provides a neuroprotective effect. The aim of this study was to explore whether the neuroprotective effect of CA is via an upregulation of GSTP expression and the possible signaling pathways involved. SH-SY5Y cells were pretreated with 1 μM CA followed by treatment with 100 μM 6-hydroxydopamine (6-OHDA). Both immunoblotting and enzyme activity results show that CA also induced protein expression and enzyme activity of GSTP. Moreover, CA significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt, the nuclear translocation of p65, but not mitogen-activated protein kinases (p < 0.05). Pretreatment with LY294002 (a PI3K/Akt inhibitor) suppressed the CA-induced phosphorylation of IκB kinase (IKK) and IκBα, p65 nuclear translocation, and nuclear factor-kappa B (NF-κB)-DNA binding activity as well as GSTP protein expression. Furthermore, CA attenuated 6-OHDA-induced caspase 3 activation, and cell death was reversed by GSTP siRNA or LY294002 treatment. Additionally, male Wistar rats with lesions induced by 6-OHDA treatment in the right striatum responded to treatment with CA, which significantly reversed the reduction in GSTP protein expression that resulted from lesioning. We suggest that CA prevents 6-OHDA-induced apoptosis through an increase in GSTP expression via activation of the PI3K/Akt/NF-κB pathway. Therefore, CA may be a promising candidate for use in the prevention of Parkinson's disease.
URI: http://scholars.ntou.edu.tw/handle/123456789/23808
ISSN: 0893-228X
1520-5010
DOI: 10.1021/tx5003063
Appears in Collections:食品科學系

Show full item record

WEB OF SCIENCETM
Citations

41
checked on Jun 27, 2023

Page view(s)

117
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback