Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境資訊系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/23893
Title: The Influence of Environments on the Intensity Change of Typhoon Soudelor
Authors: Oey, Leo
Yu-Chun Lin 
Keywords: typhoon rapid intensification;tropical cyclones;vertical wind shear;upper-ocean warm eddies;26 °;C isotherm;El Nino;western North Pacific;upper-tropospheric anticyclone;Philippine Sea;VERTICAL WIND SHEAR;LARGE-SCALE CHARACTERISTICS;TROPICAL CYCLONE INTENSITY;OCEAN;TEMPERATURE;SEA
Issue Date: Feb-2021
Publisher: MDPI
Journal Volume: 12
Journal Issue: 2
Source: Atmosphere
Abstract: 
Previous studies have shown that background oceanic and atmospheric environments can influence not only the formation but also the intensity of tropical cyclones. Typhoon Soudelor in August 2015 is notable in that it underwent two rapid intensifications as the storm passed over the Philippine Sea where the 26 degrees C isotherm (Z(26)) was deeper than 100 m and warm eddies abounded. At the same time, prior to the storm's arrival, an anomalous upper-level anticyclone developed south of Japan and created a weakened vertical wind shear (V-s) environment that extended into the Philippine Sea. This study examines how the rapid intensification of Typhoon Soudelor may be related to the observed variations of Z(26), V-s and other environmental fields as the storm crossed over them. A regression analysis indicates that the contribution to Soudelor's intensity variation from V-s is the largest (62%), followed by Z(26) (27%) and others. Further analyses using composites then indicate that the weak vertical wind shear produced by the aforementioned anomalous anticyclone is a robust feature in the western North Pacific during the developing summer of strong El Ninos with Oceanic Nino Index (ONI) > 1.5.
URI: http://scholars.ntou.edu.tw/handle/123456789/23893
ISSN: 2073-4433
DOI: 10.3390/atmos12020162
Appears in Collections:海洋環境資訊系

Show full item record

Page view(s)

84
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback