Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25341
Title: Influence of coating microstructure on the corrosion behavior of Inconel 625 coatings fabricated by different thermal spraying processes
Authors: Chen, Tai-Cheng
Chou, Chau-Chang 
Lin, Hwai-En
Yung, Tung -Yuan
Yang, Chang -Ting
Tsai, Ya-Wen
Keywords: Thermal spray;Inconel 625;Corrosion;Electrochemistry;Oxide;Microcrack
Issue Date: 2024
Publisher: ELSEVIER SCIENCE SA
Journal Volume: 484
Source: SURFACE & COATINGS TECHNOLOGY
Abstract: 
Inconel 625 coatings with dense microstructures (porosity <2 %) were fabricated on AISI 304L stainless steel substrates by flame spraying (F), twin-wire arc spraying (A), plasma spraying (P), and high-velocity oxygen fuel spraying (H). The quantity of oxide within the coating layers followed the descending order of F > A > P > H, with Cr2O3 identified as the predominant oxide in the Inconel 625 coating layers. The corrosion resistance of the Inconel 625 coating specimens decreased in the order of H > A > P > F. The outstanding corrosion resistance of the Inconel 625 coating prepared by high-velocity oxygen fuel spraying was attributed to the compact coating layer with a very low oxide content. It is suggested that the localized galvanic corrosion around the oxide/matrix interface may deteriorate the corrosion resistance of the coating layer, which is the primary factor contributing to the low corrosion resistance of the F specimen. Although the P specimen exhibited a lower oxide content than the A specimen, it demonstrated inferior corrosion resistance. This phenomenon can be attributed to the significant formation of microcracks within the P specimen, creating penetration tunnels for the corrosive solution and consequently reducing its corrosion resistance.
URI: http://scholars.ntou.edu.tw/handle/123456789/25341
ISSN: 0257-8972
DOI: 10.1016/j.surfcoat.2024.130674
Appears in Collections:機械與機電工程學系

Show full item record

Page view(s)

95
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback