Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25394
DC FieldValueLanguage
dc.contributor.authorSu, Heng-Yien_US
dc.contributor.authorLai, Chia-Chingen_US
dc.date.accessioned2024-11-01T06:30:20Z-
dc.date.available2024-11-01T06:30:20Z-
dc.date.issued2024/7/1-
dc.identifier.issn1949-3053-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25394-
dc.description.abstractThis paper presents an advanced deep ensemble learning framework for short-term load forecasting (STLF). The refined deep ensemble model (DEM), complemented with a flexible error compensation (FEC) strategy, is introduced to improve both forecast accuracy and reliability. To address the challenges of ensemble pruning and aggregation (EPA), a worst-case (WC) robust approximation problem is formulated to accommodate the inherent uncertainty in predictions. The solution to this multifaceted problem employs a sophisticated methodology, integrating cardinality minimization and the augmented Lagrangian algorithm. Real-world empirical studies substantiate the enhanced STLF attained by the proposed framework.en_US
dc.language.isoEnglishen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.relation.ispartofIEEE TRANSACTIONS ON SMART GRIDen_US
dc.subjectPredictive modelsen_US
dc.subjectOptical wavelength conversionen_US
dc.subjectMathematical modelsen_US
dc.subjectForward error correctionen_US
dc.subjectTrainingen_US
dc.subjectVectorsen_US
dc.subjectLoad forecastingen_US
dc.subjectDeep learningen_US
dc.subjectensemble learningen_US
dc.subjectload forecastingen_US
dc.subjectrobust approximationen_US
dc.subjectworst-case designen_US
dc.titleToward Improved Load Forecasting in Smart Grids: A Robust Deep Ensemble Learning Frameworken_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TSG.2024.3402011-
dc.identifier.isiWOS:001252808400024-
dc.relation.journalvolume15en_US
dc.relation.journalissue4en_US
dc.relation.pages4292-4296en_US
dc.identifier.eissn1949-3061-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Engineering-
crisitem.author.deptDepartment of Mechanical and Mechatronic Engineering-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Engineering-
Appears in Collections:機械與機電工程學系
Show simple item record

Page view(s)

92
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback