Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 機械與機電工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25394
標題: Toward Improved Load Forecasting in Smart Grids: A Robust Deep Ensemble Learning Framework
作者: Su, Heng-Yi 
Lai, Chia-Ching
關鍵字: Predictive models;Optical wavelength conversion;Mathematical models;Forward error correction;Training;Vectors;Load forecasting;Deep learning;ensemble learning;load forecasting;robust approximation;worst-case design
公開日期: 2024
出版社: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
卷: 15
期: 4
起(迄)頁: 4292-4296
來源出版物: IEEE TRANSACTIONS ON SMART GRID
摘要: 
This paper presents an advanced deep ensemble learning framework for short-term load forecasting (STLF). The refined deep ensemble model (DEM), complemented with a flexible error compensation (FEC) strategy, is introduced to improve both forecast accuracy and reliability. To address the challenges of ensemble pruning and aggregation (EPA), a worst-case (WC) robust approximation problem is formulated to accommodate the inherent uncertainty in predictions. The solution to this multifaceted problem employs a sophisticated methodology, integrating cardinality minimization and the augmented Lagrangian algorithm. Real-world empirical studies substantiate the enhanced STLF attained by the proposed framework.
URI: http://scholars.ntou.edu.tw/handle/123456789/25394
ISSN: 1949-3053
DOI: 10.1109/TSG.2024.3402011
顯示於:機械與機電工程學系

顯示文件完整紀錄

Page view(s)

92
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋