Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 水產養殖學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25497
Title: Droplet digital PCR for fish pathogen detection and quantification: A systematic review and meta-analysis
Authors: Sumon, Md Afsar Ahmed
Meregildo-Rodriguez, Edinson Dante
Lee, Po-Tsang 
Dinh-Hung, Nguyen
Larson, Earl T.
Permpoonpattana, Patima
Doan, Hien Van
Jung, Won-Kyo
Linh, Nguyen Vu
Keywords: aquaculture;diagnostic accuracy;droplet digital PCR;fish pathogens;meta-analysis;pathogen detection
Issue Date: 2024
Publisher: WILEY
Source: JOURNAL OF FISH DISEASES
Abstract: 
This study provides a comprehensive summary of the findings regarding the application and diagnostic efficacy of droplet digital PCR (ddPCR) in detecting viral and bacterial pathogens in aquaculture. Utilizing a systematic search of four databases up to 6 November 2023, we identified studies where ddPCR was deployed for pathogen detection in aquaculture settings, adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis of Diagnostic Test Accuracy guidelines. From the collected data, 16 studies retrieved, seven were included in a meta-analysis, encompassing 1121 biological samples from various fish species. The detection limits reported ranged markedly from 0.07 to 34 copies/mu L. A direct comparison of the diagnostic performance between ddPCR with quantitative PCR (qPCR) proved challenging due to limited data, thus only a pooled sensitivity analysis was feasible. The results showed a pooled sensitivity of 0.750 (95% confidence interval [CI]: 0.487-0.944) for ddPCR, compared to 0.461 (95% CI: 0.294-0.632) for qPCR, with no statistically significant difference in sensitivity between the two methods (p = .5884). Notably, significant heterogeneity was observed among the studies (I2 = 93%-97%, p < .01), with the year of publication significantly influencing this heterogeneity (p < .001), but not the country of origin (p = .49). No publication bias was detected, and the studies generally exhibited a low risk of bias according to QUADAS-C criteria. While ddPCR and qPCR showed comparable sensitivities in pathogen detection, ddPCR's capability to precisely quantify pathogens without the need for standard curves highlights its potential utility. This characteristic could significantly enhance the accuracy and reliability of pathogen detection in aquaculture.
URI: http://scholars.ntou.edu.tw/handle/123456789/25497
ISSN: 0140-7775
DOI: 10.1111/jfd.14019
Appears in Collections:水產養殖學系

Show full item record

Page view(s)

104
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback