http://scholars.ntou.edu.tw/handle/123456789/25505| 標題: | Dual-Targeting EGCG/NO-Supplying protein assembled nanoparticles with Multi-Synergistic effects against atherosclerosis | 作者: | Lin, Chi Cheng, Tsai -Mu Liu, Yun-Chun Hsu, Fang -Yu Shih, Chun -Ming Tsai, Min-Lang Shih, Chun-Che Mi, Fwu-Long |
關鍵字: | Fucoidan;Synergistic effect;Responsive release;Nitric oxide therapy;p-selectin targeting;Epigallocatechin gallate delivery | 公開日期: | 2024 | 出版社: | ELSEVIER SCIENCE SA | 卷: | 493 | 來源出版物: | CHEMICAL ENGINEERING JOURNAL | 摘要: | Limited therapeutic options are available to effectively preventing atherosclerosis. Inflammatory endothelial cells, foamy macrophages, and high protease levels contribute to atherosclerotic plaque formation. Studies have shown that catechins effectively scavenge reactive oxygen species (ROS), inhibit monocyte adhesion and reduce cholesterol levels, while nitric oxide (NO) enhances endothelial function. However, due to the poor stability and bioavailability of catechins and the toxicity from the burst release of current synthetic small molecules NO donor, effective delivery of these bioactive compounds to treat atherosclerosis is still a challenge. Herein, a catechin/ protein -based NO donor co -delivery nanosystem was designed for combinatorial anti -atherosclerotic therapy. We engineered a (-)-epigallocatechin-3-gallate (EGCG)/NO-releasing protein co -assembled nanocomplex based on specific catechin-protein interactions. Furthermore, the nanocomplex was surface modified with fucoidan (Fu), a sulfated polysaccharide with anti-inflammatory activity. This nanocomplex exhibits sensitivity to ROS, pH, and enzymes. The Fu-functionalized nanoparticles specifically accumulates in atherosclerotic plaques mediated by P-selectin on inflamed endothelial cells and scavenger receptor A (SR -A) on foamy macrophages. Under environmental stimuli that simulate the condition of plaque, the nanoparticles are readily activated to release EGCG and NO in response to excess ROS and high protease levels, exerting the multi -synergistic antiatherosclerosic effects on reducing monocyte adhesion, promoting NO production to proliferate endothelial cells, lowering ROS levels, and decreasing the foam cell formation in vitro, and reducing lipid accumulation, plaque size, and inflammatory cytokines release in high -fat diet -induced atherosclerosis model in ApoE-/- mice. The integration of plaques targeting ability and multiple therapeutic functions can provide an advanced therapeutic strategy for atherosclerosis treatment. |
URI: | http://scholars.ntou.edu.tw/handle/123456789/25505 | ISSN: | 1385-8947 | DOI: | 10.1016/j.cej.2024.152755 |
| 顯示於: | 食品科學系 |
在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。