Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品安全與風險管理研究所
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25631
DC FieldValueLanguage
dc.contributor.authorChen, I. -Chunen_US
dc.contributor.authorChi, Ching-Hoen_US
dc.contributor.authorKu, Hao-Hsiangen_US
dc.date.accessioned2025-05-28T06:12:32Z-
dc.date.available2025-05-28T06:12:32Z-
dc.date.issued2024/12/4-
dc.identifier.issn0956-7135-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25631-
dc.description.abstractHygiene habits and behaviors of food handlers are critical to ensuring food safety during production. Good Hygiene Practices (GHP) require food handlers to follow strict hygiene standards, including proper handwashing procedures and the use of personal protective equipment (PPE) such as hairnets, masks, gloves, protective clothing, pants, and work shoes to prevent cross-contamination in food factories. However, manual inspections in large-scale operations are often inefficient and impractical. To address this, this study proposes a deep learningbased system that leverages computer vision and Convolutional Neural Networks (CNNs) to automatically detect hand hygiene and PPE compliance before workers enter the production area. This ensures adherence to GHP standards, enhances food safety, improves inspection efficiency, and reduces costs. A dataset of 20,222 entries, comprising 12 handwashing actions from 8 angles and color-coded PPE conditions, was used to train and evaluate 10 models: YOLOv8, YOLOv7, YOLOv6, YOLOv5, ResNet, Dense-Net, MobileNetv2, EfficientNetv2, VGG, and Vision Transformer (ViT). YOLOv6 and YOLOv8 achieved the highest accuracy (0.999) for handwashing recognition, while Dense-Net achieved the highest accuracy (0.956) for PPE detection. This system offers an efficient and automated solution for monitoring hygiene habits, helping to prevent cross-contamination and ensure food safety within factory environments.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofFOOD CONTROLen_US
dc.subjectPersonal protective equipmenten_US
dc.subjectHandwashing procedureen_US
dc.subjectGood hygienic Practiceen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural networken_US
dc.subjectFood safetyen_US
dc.subjectFactory managementen_US
dc.titleDeep learning for the detection of good hygienic practices control measures for food handlersen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.foodcont.2024.111041-
dc.identifier.isiWOS:001375711600001-
dc.relation.journalvolume171en_US
dc.identifier.eissn1873-7129-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptInstitute of Food Safety and Risk Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptBachelor Degree Program in Ocean Business Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
Appears in Collections:食品安全與風險管理研究所
Show simple item record

Page view(s)

40
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback