Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品安全與風險管理研究所
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25631
標題: Deep learning for the detection of good hygienic practices control measures for food handlers
作者: Chen, I. -Chun
Chi, Ching-Ho
Ku, Hao-Hsiang 
關鍵字: Personal protective equipment;Handwashing procedure;Good hygienic Practice;Deep learning;Convolutional neural network;Food safety;Factory management
公開日期: 2024
出版社: ELSEVIER SCI LTD
卷: 171
來源出版物: FOOD CONTROL
摘要: 
Hygiene habits and behaviors of food handlers are critical to ensuring food safety during production. Good Hygiene Practices (GHP) require food handlers to follow strict hygiene standards, including proper handwashing procedures and the use of personal protective equipment (PPE) such as hairnets, masks, gloves, protective clothing, pants, and work shoes to prevent cross-contamination in food factories. However, manual inspections in large-scale operations are often inefficient and impractical. To address this, this study proposes a deep learningbased system that leverages computer vision and Convolutional Neural Networks (CNNs) to automatically detect hand hygiene and PPE compliance before workers enter the production area. This ensures adherence to GHP standards, enhances food safety, improves inspection efficiency, and reduces costs. A dataset of 20,222 entries, comprising 12 handwashing actions from 8 angles and color-coded PPE conditions, was used to train and evaluate 10 models: YOLOv8, YOLOv7, YOLOv6, YOLOv5, ResNet, Dense-Net, MobileNetv2, EfficientNetv2, VGG, and Vision Transformer (ViT). YOLOv6 and YOLOv8 achieved the highest accuracy (0.999) for handwashing recognition, while Dense-Net achieved the highest accuracy (0.956) for PPE detection. This system offers an efficient and automated solution for monitoring hygiene habits, helping to prevent cross-contamination and ensure food safety within factory environments.
URI: http://scholars.ntou.edu.tw/handle/123456789/25631
ISSN: 0956-7135
DOI: 10.1016/j.foodcont.2024.111041
顯示於:食品安全與風險管理研究所

顯示文件完整紀錄

Page view(s)

40
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋