Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品安全與風險管理研究所
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25631
DC 欄位值語言
dc.contributor.authorChen, I. -Chunen_US
dc.contributor.authorChi, Ching-Hoen_US
dc.contributor.authorKu, Hao-Hsiangen_US
dc.date.accessioned2025-05-28T06:12:32Z-
dc.date.available2025-05-28T06:12:32Z-
dc.date.issued2024/12/4-
dc.identifier.issn0956-7135-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25631-
dc.description.abstractHygiene habits and behaviors of food handlers are critical to ensuring food safety during production. Good Hygiene Practices (GHP) require food handlers to follow strict hygiene standards, including proper handwashing procedures and the use of personal protective equipment (PPE) such as hairnets, masks, gloves, protective clothing, pants, and work shoes to prevent cross-contamination in food factories. However, manual inspections in large-scale operations are often inefficient and impractical. To address this, this study proposes a deep learningbased system that leverages computer vision and Convolutional Neural Networks (CNNs) to automatically detect hand hygiene and PPE compliance before workers enter the production area. This ensures adherence to GHP standards, enhances food safety, improves inspection efficiency, and reduces costs. A dataset of 20,222 entries, comprising 12 handwashing actions from 8 angles and color-coded PPE conditions, was used to train and evaluate 10 models: YOLOv8, YOLOv7, YOLOv6, YOLOv5, ResNet, Dense-Net, MobileNetv2, EfficientNetv2, VGG, and Vision Transformer (ViT). YOLOv6 and YOLOv8 achieved the highest accuracy (0.999) for handwashing recognition, while Dense-Net achieved the highest accuracy (0.956) for PPE detection. This system offers an efficient and automated solution for monitoring hygiene habits, helping to prevent cross-contamination and ensure food safety within factory environments.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIER SCI LTDen_US
dc.relation.ispartofFOOD CONTROLen_US
dc.subjectPersonal protective equipmenten_US
dc.subjectHandwashing procedureen_US
dc.subjectGood hygienic Practiceen_US
dc.subjectDeep learningen_US
dc.subjectConvolutional neural networken_US
dc.subjectFood safetyen_US
dc.subjectFactory managementen_US
dc.titleDeep learning for the detection of good hygienic practices control measures for food handlersen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.foodcont.2024.111041-
dc.identifier.isiWOS:001375711600001-
dc.relation.journalvolume171en_US
dc.identifier.eissn1873-7129-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptInstitute of Food Safety and Risk Management-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptBachelor Degree Program in Ocean Business Management-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
顯示於:食品安全與風險管理研究所
顯示文件簡單紀錄

Page view(s)

40
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋