Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 工學院
  3. 河海工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25828
Title: Evaluation of liquefaction potential in central Taiwan using random forest method
Authors: Liu, Chih-Yu 
Ku, Cheng-Yu 
Chiu, Yu-Jia 
Wu, Ting-Yuan
Keywords: Liquefaction;Seismic activity;Artificial neural network;Random forest;Earthquake;Potential
Issue Date: 2024
Publisher: NATURE PORTFOLIO
Journal Volume: 14
Journal Issue: 1
Source: SCIENTIFIC REPORTS
Abstract: 
Liquefaction is a significant geotechnical hazard in seismically active regions like Taiwan, threatening infrastructure and public safety. Accurate prediction models are essential for assessing soil susceptibility to liquefaction during seismic events. This study evaluates liquefaction potential in central Taiwan using the random forest (RF) method. The RF models were developed with a dataset of 540 soil and seismic parameter sets, including depth, effective and total overburden stresses, SPT-N values, fine soil content, earthquake magnitude, peak ground acceleration, and historical liquefaction occurrences. Rigorous validation techniques, such as cross-validation and comparisons with observed liquefaction events, confirm the RF model's effectiveness, achieving an accuracy of 98.89%. The model also quantifies predictor importance, revealing that the SPT-N value is the most critical soil factor, while peak ground acceleration is the key seismic factor for liquefaction prediction. Notably, the RF model outperforms simplified procedures in accuracy, even with fewer input factors. Our case studies show that an accuracy of over 95% can still be achieved, highlighting the RF model's superior performance compared to conventional methods, which struggle to reach similar levels.
URI: http://scholars.ntou.edu.tw/handle/123456789/25828
ISSN: 2045-2322
DOI: 10.1038/s41598-024-79127-2
Appears in Collections:河海工程學系

Show full item record

Page view(s)

29
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback