Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25839
Title: A Time-Space Numerical Procedure for Solving the Sideways Heat Conduction Problem
Authors: Tan, Ching-Chuan
Shih, Chao-Feng
Shen, Jian-Hung
Chen, Yung-Wei 
Keywords: sideways heat conduction problem (SHCP);backward heat conduction problem (BHCP);Lie group shooting method (LGSM)
Issue Date: 1-Mar-2025
Publisher: MDPI
Journal Volume: 13
Journal Issue: 5
Source: MATHEMATICS
Abstract: 
This paper proposes a solution to the sideways heat conduction problem (SHCP) based on the time and space integration direction. Conventional inverse problems depend highly on the available data, particularly when the observed data are contaminated with measurement noise. These perturbations may lead to significant oscillations in the solution. The uniqueness of the solution in this SHCP requires revaluation when boundary conditions (BCs) or initial conditions (ICs) are missing. First, the spatial gradient between two points resolves the missing BCs in the computational domain by a one-step Lie group scheme. Further, the SHCP can be transformed into a backward-in-time heat conduction problem (BHCP). The second-order backward explicit integration can be applied to determine the ICs using the two-point solution at each time step. The performance of the suggested strategy is demonstrated with three numerical examples. The exact solution and the numerical results correspond well, despite the absence of some boundary and initial conditions. The only method of preventing numerical instability in this study is to alter the direction of numerical integration instead of relying on regularization techniques. Therefore, a numerical formula with two integration directions proves to be more accurate and stable compared to existing methods for the SHCP.
URI: http://scholars.ntou.edu.tw/handle/123456789/25839
DOI: 10.3390/math13050751
Appears in Collections:輪機工程學系

Show full item record

Page view(s)

8
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback