Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海運暨管理學院
  3. 輪機工程學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25839
DC 欄位值語言
dc.contributor.authorTan, Ching-Chuanen_US
dc.contributor.authorShih, Chao-Fengen_US
dc.contributor.authorShen, Jian-Hungen_US
dc.contributor.authorChen, Yung-Weien_US
dc.date.accessioned2025-06-07T06:59:06Z-
dc.date.available2025-06-07T06:59:06Z-
dc.date.issued2025-03-01-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25839-
dc.description.abstractThis paper proposes a solution to the sideways heat conduction problem (SHCP) based on the time and space integration direction. Conventional inverse problems depend highly on the available data, particularly when the observed data are contaminated with measurement noise. These perturbations may lead to significant oscillations in the solution. The uniqueness of the solution in this SHCP requires revaluation when boundary conditions (BCs) or initial conditions (ICs) are missing. First, the spatial gradient between two points resolves the missing BCs in the computational domain by a one-step Lie group scheme. Further, the SHCP can be transformed into a backward-in-time heat conduction problem (BHCP). The second-order backward explicit integration can be applied to determine the ICs using the two-point solution at each time step. The performance of the suggested strategy is demonstrated with three numerical examples. The exact solution and the numerical results correspond well, despite the absence of some boundary and initial conditions. The only method of preventing numerical instability in this study is to alter the direction of numerical integration instead of relying on regularization techniques. Therefore, a numerical formula with two integration directions proves to be more accurate and stable compared to existing methods for the SHCP.en_US
dc.language.isoEnglishen_US
dc.publisherMDPIen_US
dc.relation.ispartofMATHEMATICSen_US
dc.subjectsideways heat conduction problem (SHCP)en_US
dc.subjectbackward heat conduction problem (BHCP)en_US
dc.subjectLie group shooting method (LGSM)en_US
dc.titleA Time-Space Numerical Procedure for Solving the Sideways Heat Conduction Problemen_US
dc.typejournal articleen_US
dc.identifier.doi10.3390/math13050751-
dc.identifier.isiWOS:001442578700001-
dc.relation.journalvolume13en_US
dc.relation.journalissue5en_US
dc.identifier.eissn2227-7390-
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1English-
crisitem.author.deptCollege of Maritime Science and Management-
crisitem.author.deptDepartment of Marine Engineering-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Maritime Science and Management-
顯示於:輪機工程學系
顯示文件簡單紀錄

Page view(s)

8
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋