Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25866
Title: Effects of Arsenic-induced Diabetic Vascular Diseases through Mitogen-activated Protein Kinase Signaling Pathway: <i>In vitro</i> and <i>In vivo</i> Studies
Authors: Liu, Bi-Yu
Jhu, Jhih-Syuan
Syu, Man-Lun
Hwang, Deng-Fwu 
Keywords: Apoptosis;arsenic;diabetes;endoplasmic reticulum stress;mitogen-activated protein kinase signaling pathway;mitochondrial stress;vascular disease
Issue Date: 29-Apr-2025
Publisher: WOLTERS KLUWER MEDKNOW PUBLICATIONS
Journal Volume: 68
Journal Issue: 3
Start page/Pages: 127-139
Source: JOURNAL OF PHYSIOLOGICAL INVESTIGATION
Abstract: 
Arsenic (As) is an environmental pollutant that causes endocrine disruption. Diabetes increases the risk of Blackfoot disease, which is a peripheral artery disease caused by chronic exposure to As through drinking water in Taiwan and Bangladesh; however, the mechanism underlying this increased risk remains unclear. Therefore, in this study, we aimed to investigate the mechanisms underlying vascular damage in hyperglycemic conditions caused by As exposure using in vivo and in vitro studies. We utilized an animal model of streptozotocin-induced diabetes that was exposed to As through drinking water for 8 weeks. Subsequently, blood and organ samples of the animals were collected for follow-up analysis. Further, we cultured endothelial cells that were treated with As treatment in glucose condition and detected their biomarkers. The findings revealed that both the diabetes and diabetes + As groups exhibited insulin resistance, weight gain, and increased plasma triglyceride and total cholesterol levels. The diabetes + As group had lower antioxidant activity, which caused the arteries to exhibit prominent luminal narrowing with increased thickness. In vivo study revealed that glucose + As group-induced cell cycle arrest, a 98.80% increase in reactive oxygen species (ROS) levels, and decreased cell viability and mitochondrial membrane potential (MMP). However, in glucose + As group, treatment with SP600125 and U10126 treatment decreased ROS production by 80.5% and 84%, respectively, and restored MMP and cell viability. The glucose-regulated protein 78 level increased in the As as well as glucose + As groups. Our findings demonstrate that As exacerbates vascular damage in individuals with diabetes and its associated complications through the activation of the mitogen-activated protein kinase signaling pathway.
URI: http://scholars.ntou.edu.tw/handle/123456789/25866
ISSN: 2950-6344
DOI: 10.4103/ejpi.EJPI-D-24-00097
Appears in Collections:食品科學系

Show full item record

Page view(s)

21
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback