Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 生命科學暨生物科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/5325
Title: Ethanol inhibits retinal and CNS differentiation due to failure of cell cycle exit via an apoptosis-independent pathway
Authors: Hsin-Yu Chung
Chin-Teng Chang
Huay-Win Young
Shing P. Hu
Wen-Shyong Tzou 
Chin-Hwa Hu 
Keywords: ethanol;ros;zebrafish;apoptosis;Neural differentiation
Issue Date: Jul-2013
Publisher: ELSEVIER
Journal Volume: 38
Start page/Pages: 92-103
Source: Neurotoxicology and Teratology
Abstract: 
Alcohol exposure during embryogenesis results in a variety of developmental disorders. Here, we demonstrate that continuous exposure to 1.5% ethanol causes substantial apoptosis and abrogated retinal and CNS development in zebrafish embryos. Chronic exposure to ethanol for 24 h before hatching also induces apoptosis and retinal disorder. After the 2-day post-fertilization (dpf) stage, chronic exposure to ethanol continued to induce apoptosis, but did not block retinal differentiation. Although continuous ethanol exposure induces substantial accumulation of reactive oxygen species (ROS) and increases p53 expression, depletion of p53 did not eliminate ethanol-induced apoptosis. On the other hand, sequestering ROS with the antioxidant reagent N-acetylcysteine (NAC) successfully inhibited ethanol-associated apoptosis, suggesting that the ethanol-induced cell death primarily results from ROS accumulation. Continuous ethanol treatment of embryos reduced expression of the mature neural and photoreceptor markers elavl3/huC, rho, and crx; in addition, expression of the neural and retinal progenitor markers ascl1b and pax6b was maintained at the undifferentiated stage, indicating that retinal and CNS neural progenitor cells failed to undergo further differentiation. Moreover, ethanol treatment enhanced BrdU incorporation, histone H3 phosphorylation, and pcna expression in neural progenitor cells, thereby maintaining a high rate of proliferation. Ethanol treatment also resulted in sustained transcription of ccnd1/cyclin D1 and ccne/cyclin E throughout development in neural progenitor cells, without an appropriate increase of cdkn1b/p27 and cdkn1c/p57 expression, suggesting that these cells failed to exit from the cell cycle. Although NAC was able to mitigate ethanol-mediated apoptosis, it was unable to ameliorate the defects in visual and CNS neural differentiation, suggesting that abrogated neural development in ethanol-exposed embryos is unlikely to arise from excessive apoptosis. In conclusion, we demonstrate that the pathological effect of ethanol on zebrafish embryos is partially attributable to cell death and inhibition of visual and CNS neuron differentiation. Excessive apoptosis largely results from the accumulation of ROS, whereas abrogated neural development is caused by failure of cell cycle arrest, which in turn prevents a successful transition from proliferation to differentiation.
URI: http://scholars.ntou.edu.tw/handle/123456789/5325
ISSN: 0892-0362
DOI: ://WOS:000326433700012
://WOS:000326433700012
10.1016/j.ntt.2013.05.006
://WOS:000326433700012
://WOS:000326433700012
Appears in Collections:生命科學暨生物科技學系

Show full item record

Page view(s)

193
Last Week
0
Last month
0
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback