Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 生命科學暨生物科技學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/5455
Title: Mercury (II) impairs nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos by targeting primarily at the stage of DNA incision
Authors: Chang, Yung
Lee, Wei-Yuan
Lin, Yu-Jie
Hsu, Todd 
Keywords: MOLECULAR-MECHANISMS;DAMAGE RECOGNITION;ERCC1-XPF PROTEIN;MISMATCH REPAIR;BINDING;NUCLEASE;CADMIUM;CELLS;XPC
Issue Date: Nov-2017
Publisher: ELSEVIER SCIENCE BV
Journal Volume: 192
Start page/Pages: 97-104
Source: AQUAT TOXICOL
Abstract: 
Mercuric ion (Hg2+) is the most prevalent form of inorganic Hg found in polluted aquatic environment. As inhibition of DNA damage repair has been proposed as one of the mechanisms of Hg2+-induced genotoxicity in aquatic animals and mammalian cells, this study explored the susceptibility of different stages of nucleotide excision repair (NER) in zebrafish (Danio rerio) embryos to Hg2+ using UV-damaged DNA as the repair substrate. Exposure of embryos at 1 h post fertilization (hpf) to HgCl2 at 0.1-2.5 mu M for 9 h caused a concentration-dependent inhibition of NER capacity monitored by a transcription-based DNA repair assay. The extracts of embryos exposed to 2.5 mu M Hg2+ almost failed to up-regulate UV-suppressed marker cDNA transcription. No inhibition of ATP production was observed in all Hg2+-exposed embryos. Hg2+ exposure imposed either weak inhibitory or stimulating effects on the gene expression of NER factors, while band shift assay showed the inhibition of photolesion binding activities to about 40% of control in embryos treated with 1-2.5 mu M HgCl2. The damage incision stage of NER in zebrafish embryos was found to be more sensitive to Hg2+ than photolesion binding capacity due to the complete loss of damage incision activity in the extracts of embryos exposed to 1-2.5 mu M Hg2+. NER-related DNA incision was induced in UV-irradiated embryos based on the production of short DNA fragments matching the sizes of excision products generated by eukaryotic NER. Pre-exposure of embryos to Hg2+ at 0.1-2.5 pm all suppressed DNA incision/excision in UV-irradiated embryos, reflecting a high sensitivity of DNA damage incision/excision to Hg2+. Our results showed the potential of Hg2+ at environmental relevant levels to disturb NER in zebrafish embryos by targeting primarily at the stage of DNA incision/excision.
URI: http://scholars.ntou.edu.tw/handle/123456789/5455
ISSN: 0166-445X
DOI: 10.1016/j.aquatox.2017.09.001
Appears in Collections:生命科學暨生物科技學系
06 CLEAN WATER & SANITATION

Show full item record

WEB OF SCIENCETM
Citations

10
Last Week
1
Last month
1
checked on Jun 27, 2023

Page view(s)

164
Last Week
0
Last month
6
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback