Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/9815
DC FieldValueLanguage
dc.contributor.authorHuang, Chung-Hsiungen_US
dc.contributor.authorHuang, Chiung-Yien_US
dc.contributor.authorHo, Hui-Minen_US
dc.contributor.authorLee, Ching-Hungen_US
dc.contributor.authorLai, Pang-Tien_US
dc.contributor.authorWu, Suh-Chinen_US
dc.contributor.authorLiu, Shih-Jenen_US
dc.contributor.authorHuang, Ming-Hsien_US
dc.date.accessioned2020-11-21T02:18:37Z-
dc.date.available2020-11-21T02:18:37Z-
dc.date.issued2020-07-21-
dc.identifier.issn2051-1426-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/9815-
dc.description.abstractBackground Emulsion adjuvants are a potent tool for effective vaccination; however, the size matters on mucosal signatures and the mechanism of action following intranasal vaccination remains unclear. Here, we launch a mechanistic study to address how mucosal membrane interacts with nanoemulsion of a well-defined size at cellular level and to elucidate the impact of size on tumor-associated antigen therapy. Methods The squalene-based emulsified particles at the submicron/nanoscale could be elaborated by homogenization/extrusion. The mucosal signatures following intranasal delivery in mice were evaluated by combining whole-mouse genome microarray and immunohistochemical analysis. The immunological signatures were tested by assessing their ability to influence the transportation of a model antigen ovalbumin (OVA) across nasal mucosal membranes and drive cellular immunity in vivo. Finally, the cancer immunotherapeutic efficacy is monitored by assessing tumor-associated antigen models consisting of OVA protein and tumor cells expressing OVA epitope. Results Uniform structures with similar to 200 nm in size induce the emergence of membranous epithelial cells and natural killer cells in nasal mucosal tissues, facilitate the delivery of protein antigen across the nasal mucosal membrane and drive broad-spectrum antigen-specific T-cell immunity in nasal mucosal tissues as well as in the spleen. Further, intranasal vaccination of the nanoemulsion could assist the antigen to generate potent antigen-specific CD8+ cytotoxic T-lymphocyte response. When combined with immunotherapeutic models, such an effective antigen-specific cytotoxic activity allowed the tumor-bearing mice to reach up to 50% survival 40 days after tumor inoculation; moreover, the optimal formulation significantly attenuated lung metastasis. Conclusions In the absence of any immunostimulator, only 0.1% content of squalene-based nanoemulsion could rephrase the mucosal signatures following intranasal vaccination and induce broad-spectrum antigen-specific cellular immunity, thereby improving the efficacy of tumor-associated antigen therapy against in situ and metastatic tumors. These results provide critical mechanistic insights into the adjuvant activity of nanoemulsion and give directions for the design and optimization of mucosal delivery for vaccine and immunotherapy.en_US
dc.language.isoen_USen_US
dc.publisherBMJ PUBLISHING GROUPen_US
dc.relation.ispartofJ IMMUNOTHER CANCERen_US
dc.subjectNATURAL-KILLERen_US
dc.subjectDIETARY LIPIDSen_US
dc.subjectT-CELLSen_US
dc.subjectNANOPARTICLESen_US
dc.subjectIMMUNIZATIONen_US
dc.subjectVACCINESen_US
dc.subjectRECEPTORen_US
dc.subjectEPITOPEen_US
dc.subjectSIZEen_US
dc.titleNanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccinationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1136/jitc-2020-001022-
dc.identifier.isiWOS:000582201300004-
dc.relation.journalvolume8en_US
dc.relation.journalissue2en_US
item.openairetypejournal article-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptDepartment of Food Science-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.orcid0000-0002-2295-6412-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
Appears in Collections:食品科學系
03 GOOD HEALTH AND WELL-BEING
11 SUSTAINABLE CITIES & COMMUNITIES
Show simple item record

WEB OF SCIENCETM
Citations

8
Last Week
0
Last month
0
checked on Jun 27, 2023

Page view(s)

340
Last Week
0
Last month
5
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback