Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 海洋科學與資源學院
  3. 海洋環境與生態研究所
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/19421
標題: Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea
作者: Chen-Tung Arthur Chen
Shu-Lun Wang
Wen-Chen Chou 
David D. Sheu
公開日期: 5-十月-2006
出版社: ELSEVIER
卷: 101
期: 3-4
起(迄)頁: 277-305
來源出版物: Marine Chemistry
摘要: 
To study the dissolved carbonate system in the South China Sea (SCS) and to understand the water mass exchange between the SCS and the West Philippine Sea (WPS), pH, total alkalinity and total CO2 were measured aboard the R/V Ocean Researcher 1. Because of the sill that separates these two seas in the Luzon Strait with a maximum depth of 2200 m, the SCS Deep Water has characteristics similar to those of water at about 2200 m in the WPS. The minimum pH and the maxima of normalized alkalinity and total CO2 commonly found in the open oceans at mid-depth also prevail in the WPS but are, however, very weak in the SCS. Rivers and inflows from Kuroshio Surface and Deep Waters through the Luzon Strait as well as those through the Mindoro Strait transport carbon to the SCS year-round. Meanwhile, the outflowing Taiwan Strait water as well as the SCS Surface and Intermediate Waters of the Luzon Strait transports carbon out of the SCS year-round. The Sunda Shelf is also a channel for carbon transport into the SCS in the wet season and out of the SCS in the dry season.

fCO2 data and mass balance calculations indicate that the SCS is a weak CO2 source in the wet season but an even weaker CO2 sink in the dry season. With these facts taken together, the SCS is likely a very weak CO2 source. Anthropogenic CO2 penetrates to about 1500 m in depth in the SCS, and the entire SCS contains 0.60 ± 0.15 × 1015 g of excess carbon. Typical profiles of pH as well as the degree of saturation of each of calcite and aragonite in 1850 and 1997 are presented, and those for 2050 AD are projected. The maximum decrease in pH is estimated to be 0.16 pH units in the surface layer when the amount of CO2 is doubled. It is anticipated that aragonite in the upper continental slope will likely start to dissolve, thereby neutralizing excess CO2 by around 2050 AD. This paper is unique in that it presents the results of the first attempt ever to estimate the past, present and future physico-chemical properties of the world's largest marginal sea.
URI: http://scholars.ntou.edu.tw/handle/123456789/19421
DOI: 10.1016/j.marchem.2006.01.007
顯示於:海洋環境與生態研究所

顯示文件完整紀錄

Page view(s)

190
上周
0
上個月
0
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋